
NASA-CR-| 92863

Stark)

Ze/SZ

,/

Unclas

0159811

CSDL-C-5709

ADVANCED INFORMATION PROCESSING SYSTEM

(AIPS)

SYSTEM SPECIFICATION

(Revision 1)

October, 1984

Robert N. O'Don_ell, Technical Manager

Philip G. ;ellema,,, r,_ Manager

The Charles Stark Draper Laboratory, Inc.

Cambridge, Massachusetts 02139

ii

ACKNOWLEDGEMENT

This report was prepared by The Charles Stark Draper Laboratory, Inc.

under Contract NAS9-1B023, Task Orders #35 and #84-18, with the Lyndon B.

Johnson Space Center of the National Aeronautics & Space Administration.

A preliminary version of this specification was issued on March 16th, i984
under Task Order #35, for the purpose of supporting the AIPS Phase I Sys-

tem Design Review at the Draper Laboratory on March 28th - 30th, 1984.

Revisions incorporated after March 1984 to ref]ect results of the Phase I

System Design Review process were accomplished under Task Order #84-18 and

the document was published _s CSDL-C-5709 on May 15th, 1984.

This Revision 1 of CSDL-C-5709 differs from the original (5/15/84) version

in that a more extensive Table of Contents ls provided. The technical

content is unchanged.

Publication of this report does not constitute approval by the NASA/JSC of

the findings or conclusions contained herein. It is published for the

exchange and stimulation of ideas.

iii

1111_.._..,_,, f_t_'CN'r:<!N,_fl ', ', ,,,w PRECEOIHG PACE F3LAI'_i(NOT FILMED

iv

ABSTRACT

The Advanced Information Processing System (AIPS) is designed to provide a

fault tolerant and damage tolerant data processing architecture that
meets aeronautical and space vehicle application requirements. Quantita-

tive and qualitative AIPS requirements derived from seven different

applications have been defined. Examples of the former are processor
throughput, memory size, transport lag, mission success probability, etc.

Examples of the latter are graceful degradation, growth and change toler-

ance, integrability, etc. The AIPS architecture wi11 satisfy the quanti-

tative requirements and also have attributes that make it responsive to

the qualitative requirements.

The system is comprised of hardware 'building blocks' which are fault tol-

erant processing elements, a fault and damage tolerant intercomputer net-
work and an input/output network, and a fault tolerant power distribution

system. A network operating system integrates these elements into a

coherent system.

The AIPS architecture permits application designers to select an appro-

priate set of the building blocks and system services and configure a spe-

cific processing system for their application. The application designer

need not include all the building blocks that are available in the AIPS

system. The number and type of building blocks and their configuration

will be determined by the specific applications requirements.

This specification defines the AIPS and specifies the hardware and soft-
ware configurations for a laboratory proof-of-concept (POC) system which

will be built and evaluated to demonstrate feasibility of the AIPS con-

cept.

V

= -_L ,.'_{,_; ,. r..,,_._...

vi

TABLE OF CONTENTS

Section Page

1.0 Scope 1

J.l Purpose " 1

2.0 Applicab[e Documents 1
2.1 Governmental Documents I

2.2 Nongovernmental Documents i

3.0 Requirements 1

3.1 System Definition 1
3.1.1 Introduction 1

3.1.2 AIPS Concepts 2
3.1.2.1 Overview 2

3.1.2.2 Function Migration 3

3.1.2.3 Resource Transparency 3

3.1.2.4 System Control 4
3.1.2.5 Data Base 6

3.1.2.5 Fault Tolerance B

3.1.2.7 Damage Tolerance 7
3.1.2.8 Source Congruency 8

3.1.2.9 Mass Memory 9
3.1.3 System Services 10

3.1.3.1 Local Computer Management 10

3.1.3.2 IC Network Management 11

3.1.3.3 Nonlocal I/O Management 12
3.1.3.4 Mass Memory Management 12

3.1.3.5 Time and File Management 12

3.1.3.6 Function Management 13
3.1.4 Proof-of-Concept System 13

3.1.4.1 Proof-of-Concept Building Blocks 14

3.1.4.2 Architecture of AIPS Building Blocks 16
3.1.4.2.1 Fault Tolerant Processor i6

3.1.4.2.1.i Fault Tolerant Processor: Software View . 16

3.i.4.2.i.2 Fault Tolerant Processor: Hardware View 20

3.i.4.2.1.3 Fault Tolerant Processor: External

Interfaces 22

3.i.4.2.2 Fault Tolerant Multiprocessor 25

3.1.4.2.2.i Multiprocessor Software Appearance 25

3.i.4.2.2.2 Multiprocessor Redundancy & Fault Tolerance

Features 27

3.1.4.2.3 Microprocessor Level Architecture 31

3.1.4.2.3.i Virtual Memory 3i

3.1.4.2.3.2 Privileged Mode 32

3.i.4.2.3.3 HOL Support 33

3.i.4.2.3.4 Memory Address Space 33

3.i.4.2.3.5 Testability 33

vii

3.1.4.2.3.6 Performance 34

3.1.4.2.4 IC and I/O Networks 34

3.1.4.2.5 Mass Memory 35

3.1.5 AIPS POC System Operating Environment 35
3.1.5.1 Overview 35

3.1.5.2 Operating Environment 37

3.2 Characteristics 39
3.2.1 Performance Goa]s 39

3.2.1.1 System Time 39

3.2.1,2 Function Migration 39

3.2.1.3 Fault Detection and Reconfiguration Time 39

3.2.1.4 Computer Redundancy Management Overhead • . 39
3.2.1.5 interfunction Communication 39

3.2.1.6 Sensor/Effector I/O 39

3.2.1.7 Interchannei Communication Time to Support Source

Congruency 40
3.2.1.8 Operating System Context Switch Time 40

3.2.1.9 Time for Intercomputer Messages 40
3.2.1.10 Total System Software Overhead 40

3.2.2 Physical Characteristics 40
3.2.3 Design Objectives 40

3.2.3.1 Physical Dispersion 40
3.2.3.2 Function Distribution 40

3.2.3.3 Maintainability 40

3.2.3.4 Reliability 41

3.2.3,5 Availability 41
3.2.3.6 Adaptability • 41

3.2.4 Testability • • • 42

3.2.4.1 Testability Concept 42
3.2.4.2 System Test Features 42

3.2.4.2.1 Test Features 42

3.2.4.2.1.1 System Fault Logging 42
3.2.4.2.1.2 Resource Utilization 42

3.2.4.2.1.3 System Configuration Trace 42
3.2.4.2.1.4 System Halt 42

3.2.4.2.1.5 System Watchdog Timer 43
3.2.4.2.2 Processor Site Test Features 43

3.2.4.2.2.1 Fault Logging 43

3.2.4.2,2.2 Operating System Entry Trace 43
3.2.4.2.2.3 Watchdog Timer 43

3.2.4.2.2.4 Processor Halt 44

3.2.4.2.2.5 Simulated Fault Capability 44
3.2.4.3 Testability Matrix 44

3.2.5 Environmental Conditions 44

3.2.5.1 Ambient Temperature 44
3.2.5.2 Humidity 44

3.2.5.3 Electrical Power 45

3.2.5.4 General 45
3.3 Design and Construction 45

3.3.1 Parts, Materials, and Processes 45

3.3.2 Electromagnetic Radiation 46

3.3.3 Workmanship 46

3.3.4 Computer Programming Standards 46
3.4 Documentation 46

viii

3.5 Functiona] Area Characteristics 48

3.5.1 System Hardware 48
3.5.1.1 Fault Tolerant Processor (FTP) 48

3.5.1.1.1 Computational Processor 48
3.5.1.1.1.1 Central Processor Unit 48

3.5,1.1.1.2 Memory 48
3.5.1.1.1.3 Timers 50

3.5,1.1.1.4 Shared Bus Port 51

3.5.1.1.1.5 Built-in Test Features 51

3.5.1,1.2 Input Output Processor 53
3.5,1.1.2.1 Central Processor Unit 53

3.5.1.1.2.2 Memory 53
3.5.1,1.2.3 Timers 53

3.5.1.1.2.4 Shared Bus Port 54

3.5.1.1.2.5 Intercomputer Network Interface 55

3.5.i.I.2.6 Input/Output Network Interface 57

3.5.1.1.2.7 Local Input/Output Devices 59
3.5.1.1.2.8 Built-in Test Features 59

3.5.1.I.3 Common Functions 50

3.5.1.1.3.1 FTP Data Exchange Mechanism 61

3.5.1.1.3.2 Mass Memory Bus Interface 54

3.5.i.I.3.3 CP/IOP Communication 66
3.5.i.I.3.4 Fault Tolerant Clock 57

3.5.1.1.3.5 Power Conditioning 67

3.5.1.2 Fault To]erant Multiprocessor (FTMP) 57

3.5.1.2.1 Fault Tolerant Clock 68

3.5.1.2.2 FTMP Processing Element 70
3.5.1.2.2.1 Central Processor Unit 70

3.5.1.2.2.2 Memory 71
3.5.1.2.2.3 Timers 7i

3.5.i.2.2.4 Built-in Test Features 73

3.5.1.2.2.5 Fault Tolerant Cross Strapped Connections
Interface 74

3.5.1.2.2.6 Intercomputer Network Interface 75
3.5.1.2.2.7 Input/Output Network Interface 78

3.5.1.2.2.8 Mass Memory Bus Interface 80

3.5.1.2.2.9 Registers 82
3.5.1.2.3 Shared Memory 83

3.5.1.3 Intercomputer Network Node and Interconnections • 86
3.5.1.3.1 Transmit/Receive Components 86

3.5.1.3.1.1 Receiver 86

3.5.1.3.1.2 Protocol Decoder 86
3.5.1.3,1.3 Address Decoder 86

3.5.1.3.1.4 Data Decoder 87

3.5.1.3.1.5 Signal Regeneration Logic 87
3.5.1.3.1,6 Transmitter 87

3.5,1.3.2 Control Components 87

3.5.1.3.2.1 Node Sequencer and Control 87
3.5.1.3.2.2 Port Configuration Control 88
3.5.1.3.2.3 Protocol Encoder 88

3.5.1.4 Input Output Network Node and Interconnections . 88
3.5.1.4.1 Transmit/Receive Components 89

3.5.1.4.1.1 Receiver 89

3.5.1.4.1.2 Protocol Decoder 89

ix

3.5.1.4.1.3 Address Decoder 90

3.5.1.4.1.4 Data Decoder 90

3.5.1.4.1.5 Signal Regeneration Logic 90
3.5.1.4.1.6 Transmitter 91

3.5.1.4.2 Control Components 91

3.5.1.4.2.1 Node Sequencer and Control 91

3.5.1.4.2.2 Port Configuration Control 91

3.5.1.4.2.3 Protoco] Encoder 91
3.5.1.5 Mass Memory 91

3.5.1.5.1 Mass Memory Controller 91

3.5.1.5.2 Memory Medium 93

3.5.1.6 Power Distribution 93
3.5.1.6.1 Prime Source Conditioners 93

3.5.1.6.2 Distribution 94
3.5.1.6.3 Control 94

3.5.2 System Software 95

3.5.2.1 General Requirements 95

3.5.2.1.1 Programming Languages 95

3.5.2.1.2 Function Partitioning Guidelines 95
3.5.2.1.3 Software Structure 95

3.5.2.1.3.1 Mission Phase Structure 95

3.5.2.1.3.2 Application Function Structure 95
3.5.2.1.4 Growth and Change 96

3.5.2.1.5 Fault Tolerance • • 96
3.5.2.1.5.1 Recovery Block 97

3.5.2.1.5.2 N Version 97
3.5.2.1.5.3 Backup Software 97

3.5.2.1.6 Testability 97

3.5.2.1.6.1 Fault Logging 97
3.5.2.1.6.2 Resource Utilization 97

3.5.2.1.6.3 Operating System Entry Trace 97
3.5.2.1.7 System Znitialization and Restart 97

3.5.2.2 Modes of Operation 98
3.5.2.2.1 Startup and Initialization 98

3.5.2.2.2 Normal 99
3.5.2.2.3 Reconfiguration 100

3.5.2.2.4 Fault Processing 100

3.5.2.2.5 Test 100
3.5.2.3 Specific Requirements 101

3.5.2.3.1 Local Operating Systems 109

3.5.2.3.1.1 Uniprocessor Operating System 109

3.5.2.3.1.2 Multiprocessor Operating System 142
3.5.2.3.2 Network Operating System 174

3.5.2.3.2.1 Intercomputer Communication 175
3.5.2.3.2.2 Global I/O Communication 191

3.5.2.3.2.3 Regional I/O Communication 199

3.5.2.3.2.4 Mass Memory Communication 208

4.0 quality Assurance 213

4.1 General 213

4.1.1 Responsibility For Tests 213

4.2 Qua]ity Conformance 213
4.3 Evaluation 214

5.0 Preparation for De]ivery

5.1 Shipments

6.0 Notes

6.1 Laning Poll
6.1.1 Overview

6.1.2 An Implementation

6.1.3 Timing Considerations
6.2 Encoded Mass Memory

6.3 Simplex Source Congruency

214

214

214

214

215

215
215

216

217

xi

xii

LIST OF _LLUSTRATIONS

Figure

•

2.
3.

4.

Page

0

6.

7.
8.

9.

10.
11.

12.

13.
14.

15.

16.
17.

18.

19.
20.

21.

22.
23.

24.

25.
26.

27.

28.
29.

30.
31.

32.

33.
34.

35.

_36.
37.

38.

39.
40.

41.

42.

AIPS Architecture: A Software View 4

System Services il

AIPS Proof-of-Concept Configuration i5

Fault Tolerant Processor Architecture: Software View 18

Fault Tolerant Processor Architecture: Hardware View 22

FTP Interface to IC and I/O Networks 24

FTMP Architecture: A Software View 26

Proof-of-Concept System Operating Environment 38

Testability Matrix 45

AIPS Documentation Tree 47

Fault Tolerant Processor Functional Diagram 49

Computationa] Processor Functional Diagram 50

Shared Bus Port Functional Block Diagram 52

Input Output Processor Functional Diagram 54
IC Network Interface Functiona] Diagram 56

I/O Network Interface Functional Block Diagram 59

Data Exchange Functional Diagram 62

Mass Memory Bus Interface 65

FTP Fault Tolerant Clock Functional Mechanization 68

Fault Tolerant Multiprocessor Organization 69

Fault Tolerant Multiprocessor Assignments 70

FTMP Fault Tolerant Clock Functional Mechanization 7i

FTMP Typical Processing Module 72

Cross Strapped Connection Interface 75

FTMP Intercomputer Network Interface 76

FTMP Input/Output Bus Interface 79

Mass Memory Bus Interface 81

FTMP Shared Memory 84

Intercomputer Network Node 87

Intercomputer Network Node Port 88

Input/Output Network Node 89

Input/Output Network Node Port 90

Mass Memory 92

Software Function Categories 102

Uniprocessor Operating System Functions 110

Multiprocessor Operating System Functions i43

Intercomputer Communication Functions 175

Global I/O Communication Functions i9i

.Regional I/O Communication Functions 199
Mass Memory Communication Function 208

Mass Memory Architecture 217

Simplex Source Congruency: An Examp]e 219

X V

LZST OF TABLES

Table

1.
2.

System Services versus Functions
Quality Assurance Methods vs Requirements

Page

103

214

XV

_= _ _ e _" '-_'_-_._.,,.k_ _._ ./,,,T_I__

xvi

1.0 sCOPE

I.I Purpose This specification sets forth the requirements for the

design, development, fabrication, quality assurance and evaluation of the

Advanced Information Processing System (AIPS) Proof-of-Concept (POC) Sys-

tem hereinafter referred to as the POC System. These requirements shall

be the basis for the preparation of more detailed requirements to be

included in:

(1) subsequent revisions of the system specification, and in related

system documents, such as interface control documents (ICDs).

(2) specifications for the identified configuration items, hardware

and software, at lower]eveis of assembly.

2,O APPCICABLE DOCUMENTS

2.1 Governmental Documents None

2.2 Nongovernmenta] Documents

(I) Requirements

(a) AIPS System Reauirements, CSDL Report No. AIPS-83-50, August

30,]983

(2) Other Publications

(a) Software Develooment Policies & Guidelines, CSDL Report No.

CSDL-C-5526, April 15, 1983

(b) AIPS Proaram Plan - Phase I, CSDL Report No. AIPS-83-38,

August 24, 1983

(c) AIPS Technoloay Survey Reoort, CSDL Report No. CSDL-C-5691,

February 1984

3.0 REQUIREMENTS

3.1 System Definition

3.1.1 Introduction The Advanced Information Processing System (AIPS) is

designed to provide a fault tolerant and damage tolerant data processing
architecture that meets aeronautical and space vehicle application

requirements. The requirements for seven different applications are

described in the 'AIPS System Requirements' The requirements can be
divided into two categories: quantitative and qualitative. Examples of

the former are processor throughput, memory size, transport lag, mission

success probability, etc. Examples of the latter are graceful degrada-

tion, growth and change tolerance, integrability, etc. The AIPS architec-
ture is intended to satisfy the quantitative requirements and also have

attributes that make it responsive to the qualitative requirements.

The system is comprised of hardware 'building blocks' which are fault tol-
erant processing elements, a fault and damage tolerant intercomputer net-

work and an input/output network, and a fault tolerant power distribution

PRECEDING PAGE BLANK NOT FILMED

system. A network operating system ties these elements together Jn a

coherent system.

The system is managed by a Global Computer that allocates functions to
individua] processing sites, performs system level redundancy management

and reconfiguration, and maintains knowledge of the system state for dis-

tribution to the component elements. Redundancy management, task sched-

uling, and other local services at individual processing sites are handled

by local operating systems, The network operating system links local
operating systems together for such functions as intertask communi-
cations.

The following sections define the AIPS in greater detail. Section 3.1.2
is a conceptual definition of the system and its operational philosophy.

Section 3.1.3 descrilzes the system services provided by the AIPS. Section
3.1._ is a more specific description of the proof-of-concept system con-

figuration, the AIPS building blocks, and their architecture. The labora-

tory operating environment for the POC system is described in Section
3.1.5.

The AIPS architecture permits application designers to select an appro-
priate set of the buiIdlng blocks and system services and configure a spe-

cific processing system for their application. The application designer
need not include all the building blocks that are present in the POC sys-

tem. The number and type of building blocks and their configuration will

be determined by the specific appIications requirements.

3.1.2 AIP$ Concepts

3.1.2.1 Overview The Advanced Information Processing System consists, of
a number of computers located at processing sites which may be physically

dispersed throughout the vehicle. These processing sites are linked

together by a reliable and damage tolerant data communication bus, called
the Intercomputer Bus or the IC bus.

A computer at a given processing site may have access to varying numbers

and types of Input/0utput (I/0) buses. The I/0 buses may be global,
regional or local in nature. Input/Output devices on the global I/0 bus

are available to al1 or at least a majority of the AIPS computers.

Regional buses connect I/0 devices in a given region to the processing
sites located in their vicinity. Local buses connect a computer to the

I/0 devices dedicated to that computer. Additionally, there may be memory
mapped I/0 devices that can be accessed directly by a computer similar to

a memory location. Finally, there is a system Mass Memory that is direct-

ly accessible from all computers in the system on a dedicated multiplex
Mass Memory (MR) bus.

Input/Output devices on the global I/0 bus are available system wide. The
global I/0 bus is a time division multiple access (TDMA) contention bus.

The intercomputer (IC) bus is used to transmit commands and data between

computers. The IC bus is also a TDMA contention bus.

Figure 1 on page 4 shows a simplified system level diagram of the AIPS
architecture.

Computers at various AIPS processing sites are General Purpose Computers
(GPCs) of varying capabilities in terms of processing throughput, memory,

reliability, fault tolerance, and damage tolerance. Throughput may range

from that of a single microprocessor to that of a large multiprocessor.

Memory size will be determined by application requirements. Reliability,
as measured by probability of failure due to random faults, ranges from

10-4 per hour for a simplex processor to 10-10 per hour for a multiproces-

sor that uses parallel hybrid redundancy. For those functions requiring

fault masking a triplex level of redundancy is provided. For low criti-

cality functions or noncritical functions, the GPCs may be duplex or sim-

plex. Parallel hybrid redundancy is used for extremely high levels of
fault tolerance and/or for longevity (long mission durations). GPCs can

also be made damage tolerant by physically dispersing redundant GPC ele-

ments and providing secure and damage tolerant communications between
these elements. Within AIPS, computers of varying levels of fault toler-
ance can coexist such that less reliable computers are not a detriment to

higher reliability computers.

The overall framework in which AIPS operates can be characterized as a

limited form of a fully distributed multicomputer system. A fully dis-

tributed system must satisfy several requirements. The following sub-

sections describe these requirements and characterize the AIPS

architecture in the context of these requirements.

3.1.2.2 Function Migration A fully distributed system must have a multi-

plicity of resources which are freely assignable to functions on a short-

term basis. AIPS has multiple processing sites; however, they are not

freely assigned to functions on a short-term basis. During routine oper-

ations the General Purpose Computers at various processing sites are

assigned to perform a fixed set of functions, each computer doing a unique

set of tasks. However, in response to some internal or external stimulus,

the computers can be reassigned to a different set of functions. This

results in some functions migrating from one processing site to another

site in the system. Under certain conditions, it may also result in some

functions being suspended entirely for a brief time period or for the

remainder of the mission. In AIPS this form of limited distributed proc-

essing is called semi-dynamic function migration.

The internal stimuli that result in function migration may consist of

detection of a fault in the system, a change in the system load due to a

change in mission phase, etc. An example of an external stimuIus is a

crew initiated reconfiguration of the system. ,

3.1.2.3 Resource Transparency Another characteristic of a fully dis-
tributed system is that the multiplicity of resources should be transpar-

ent to the user. To a large extent, this is true in the AIPS. Function

migration is transparent to the function and the person implementing that
function in software. Interfunction communication is handted by the oper-

ating system such that the location of the two communicating functions is

also transparent to both. The two functions could be collocated in a GPC

or they may be executing in different GPCs. Indeed, at one time they may
be collocated, while at a later time one of them may have been migrated to

another site. This transparency is achieved through a layered approach to
interfunction communication. One of these layers determines the current

GLOBAL I/O BUS

REGIONAL I/O BUS

1

' Ie

COMPUTER 2

COMPUTER3 1

COMPUTER N I

INTERCOMPUTER BUS

MASS MEMORY BUS

__ SYSTEM

MASS
MEMORY

Figure I. AIPS Architecture: A Software View

d

processing site of the function to which one wishes to communicate• If it

is another GPC, another layer in the communication hierarchy is invoked

that takes care of appropriate IC bus message formatting and interface to

the bus transmitters and receivers, that is, the physical layer. This

layered approach is responsible for hiding the existence of multiple com-

puters from the applications programmer.

3.1.2._ System Control Another characteristic of a totally distributed

system is that the system control is through multiple cooperating auton-

omous operating systems. The AIPS operational philosophy differs consid-

erab]y in this regard. The overa]] AIPS system management and control
authority is vested in one GPC at any given time. This GPC is called the

Global Computer. All other GPCs are subservient to this GPC as far as

system]evel functions are concerned. However, all the loca] functions

are handled quite independently by each computer. This philosophy is more

akin to a hybrid of hierarchical and federated systems. This is explained

in the fol]owing.

Under normal circumstances each GPC operates fairly autonomously of other

computers. Each GPC has a Local Operating System that performs all the
functions necessary to keep that processing site operating in the desired

fashion. The local operating system is responsible for an orderly start
and initialization of the GPC, scheduling and dispatching of tasks,

input/output services, task synchronization and communication services,
and resource management. It also is responsible for maintaining the over-

all integrity of the processing site in the presence of faults. This
involves fault detectlon, isolation, and reconfiguration (FDIR). The

local operating system performs all of the redundancy management func-

tions including FDIR, background self tests, transient and hard fault

analysis, and fault logging.

The services provided by local operating systems at various processing
sites are similar although they may differ in implementation. For exam-

ple, the muitiprocessor version of the operating system must take into

account the multiplicity of processors for task schedullng. Similarly,
it must also consider the more complex task of redundancy management and

cycling of spare units. The uniprocessor operating system can also have
different variations depending upon the level of redundancy and the I/0

configuration. ..

The Local Operating System in each computer interfaces with the Network

Operating System. The Network Operating System is responsible for system
level functions. These include an orderly start and initialization of

various buses and networks, communication between processes executing in

different computers, system]evel resource management, and system leve]

redundancy management. System level resources are the GPCs, the I/0, IC,

and the MM buses, and the shared data and programs stored in the mass mem-

ory or in some other commonly accessible location. System redundancy man-

agement includes FDIR in the I/0 and IC node networks, corre]ation of
faults in GPCs (both transient and hard faults), reassignment of computers

to functions (function migration), and graceful degradation in case of a

loss of a processing site.

Some of the functions of the Network Operating System are centralized the

Global Computer. The Global Computer is responsible for system start,

resource management, redundancy management, and function migration. It

needs status knowledge of all processing sites and it must be able to com-

mand other GPCs to perform specific functions. This communication is

accomplished via the Network Operating System, a portion of which is resi-

dent in each computer. The Global Computer does not participate in every

system level transaction. Some of the system level functions performed by

the Network Operating System may involve only a pair of nong]oba] GPCs.

One of the GPCs is designated to be the Global Computer at the system

bootstrap time. However, this designation can be changed during system

operation by an internal or an externa] stimulus. The current Global Com-

puter responds to the internal and external stimuli. It decides when con-

trot should be transferred and who the new designee should be. A poten-

tial Globa] candidate must receive the appropriate command from the cur-

rent Global before it can assume this responsibi]ity. There is one

exception to this rule. In case of a catastrophic failure of the current

Global Computer an a]ternate would take over as the Global. The cat-

astrophic failure may be caused by a generic hardware failure of all the

redundant channels or by a software error. To ascertain that the primary

Global has failed catastrophically, a11 alternate gIobal candidates]is-

tens for periodic 'heartbeats' from the Global. In the absence of such a

signal for a predetermined time period the alternates go through a deter-

ministic distributed algorithm to determine which processor assumes the

role of the Global Computer.

3.|.2.5 Data Base Another important attribute of a distributed system is
the treatment of the data base. The data base can be completely repli-

cated in a11 subsystems or it can be partitioned among the subsystems. In

addition, the data base directory can be centralized in one subsystem,

duplicated in a]] subsystems, or partitioned among the subsystems. The

AIPS approach is a combination of these.

For the mass memory data base, all GPCs will contain a directory of the
MMU contents. This can be implemented as a 'directory to the directory'
in order to limit the involvement of GPCs in the directory change process.

The MMU directory will be static over extended.intervals.

The data base that reflects the global system state will be maintain ed by

the Global Computer in its local memory. A copy will be maintained by any

alternate Global Computer, also in local memory.

The data base that reflects the distribution of functions among GPCs will

be contained in a]l GPCs.

3.1.2.6 Fault Tolerance There is a considerable amount of hardware

redundancy and complexity associated with each of the elements shown in

Figure 1 on page 4. This redundancy allows each hardware element to be
reliable, fault tolerant, and damage tolerant. From a software viewpoint,

however, this underlying complexity of the system is transparent. This is

true not only in the context of the applications programs but for most of
the operating system as well; however, those elements of the operating

system that are concerned with fault detection and recovery and other

redundancy management functions have an intimate knowledge of the under-

lying complexity.

Hardware redundancy in the AIPS is implemented at a fairly hlgh level,

typica]ly at the processor, memory, and bus leve]. There are two funda-
mental reasons for providing redundancy in the system: one, to detect

faults through comparison of redundant results, and two, to continue sys-

tem operation after component failures. Processors, memories, and buses

are replicated to achieve a very high degree of reliability and fault tol-

6

erance. In some cases coded redundancy is used to detect faults and to

provide backups more efficiently than woutd be possible with replication.

The redundant elements are always operated in tight _ynchronism which

results in exact replication of computations and data. Fault detection

coverage with this approach is one hundred per cent once a fault is mani-
fested. To uncover latent faults, temporal and diagnostic checks are

employed. Given the low probability of latent faults, the checks need not

be run frequently.

Fault detection and masking are implemented in hardware, relieving the
software from the burden of verifying the correct operation of the hard-

ware. Fault isolation and reconfiguration are largely performed in soft-

ware with some help from the hardware. This approach has flexibility in

reassigning resources after failures are encountered, and yet it is not
burdensome since isolation and reconfiguration procedures are rarety

invoked.

3.1.2.7 Damage Tolerance One of the AIPS survivability related require-
ments is that the information processing system be able to tolerate those

damage events that do not otherwise impair the inherent capability of the

vehicle to fly, be it an aircraft or a spacecraft.

The requirement for damage tolerance will be applied to redundant GPCs,

intercomputer communications, and to communication links between GPCs and

sensors, effectors, and other vehicle subsystems.

The internal architecture of the redundant computers supports the damage

tolerance requirement in several ways. The links between redundant chan-

nels of a computer are point-to-point. That is, each channe] has a dedi-

cated link to every other channel. Second, these links can be several

meters long. This makes it possibIe to physica]}y disperse redundant

channels in the target vehicle. The channel interface hardware is such

that long links do not pose a problem in synchronizing widely dispersed

processors.

For communication between GPCs and between a GPC and I/0 devices a damage

and fault tolerant network is employed. The basic concept of the network

is as follows.

The network consists of a number of ful] duplex links that are intercon-

nected by circuit switched nodes to form a conventional multiplex bus. In

steady state, the network configuration is static and the circuit switched

nodes pass information through them without the delays which are associ-

ated with packet switched networks. The protocols and operation of the
network are identical to a multiplex bus. Every transmission by any sub-

scriber on a node is heard by all the subscribers on all the nodes just as

if they were all linked together by a linear bus.

The network performs exactly as a virtual bus. However, the network con-

cept has many advantages over a bus. First of all, a single fault can dis-

able only a small fraction of the virtual bus, typically a link connecting

two nodes, or a node. The network is able to tolerate such faults due to a

richness of interconnections between nodes. By reconfiguring the network

around the faulty element, a newvirtual bus is constructed. Except for
such reconfigurations, the structure of the virtual bus remains static.

The nodes are sufficiently smart to recognize recpnfiguration commands

from the network manager which is one of the GPCs. The network manager

can change the bus topology by sending appropriate reconfiguration com-

mands to the affected nodes.

Second, weapons effect induced damage or other damage caused by electrical

shorts, overheating, or localized fire would affect only subscribers in

the damaged portion of the vehicle. The rest of the network, and the sub-

scribers on it, can continue to operate normally. If the sensors and

effectors are themselves physically dispersed for damage tolerance or

other reasons and the damage event does not affect the inherent capability

of the vehicle to continue to fly, then the control system would continue

to function in a normal manner or in some degraded mode as determined by

sensor/effector availability. The communication mechanism, that is, the

network itself, would not be a reliability bottleneck.

Third, fault isolation is much easier in the network than in multiplex

buses. For example, a remote terminal transmitting out of turn, a rather
common failure mode, can be easily isolated in the network through a sys-

tematic search where one terminal is disabled at a time. This, in fact,

is a standard algorithm for isolating faults in the network.

Fourth, the network can be expanded very easily by adding more nodes. In
fact, nodes and subscribers to the new nodes (I/0 devices or GPCs) can be

added without shutting down the existing network. In bus systems, power
to buses must be turned off before new subscribers or remote terminals can

be added.

Finally, there are no topological constraints which might be encountered

with linear or ring buses.

3.1.2.8 Source Congruency An important consideration in designing AIPS
is the interface between redundant and simplex e]ements. This interface

design is crucial in avoiding single point faults in a redundant system.

One must perform source congruency operations on all simplex data coming
into a redundant computer. It is not sufficient to distribute simplex

data to redundant elements in one step. The redundant elements must

exchange their copy of the data with each other to make sure that every
element has a congruent value of the simptex data. The AIPS architecture

not only takes this requirement into account but also provides efficient

ways of performing simplex source congruency through a mix of hardware and
software. The simplex to redundant interface is also the place where the

applications programmer gets involved in the processor redundancy and the

applications code complexity multiplies. The AIPS processor level archi-
tecture is designed such that it separates the source congruency and com-

putational tasks into two distinct functional areas. This reduces the

applications code complexity and aids validation.

A description of simplex source congruency is contained in Section 6.3.

3.1.2.9 Mass Memory
bilities.

The mass memory in AIPS provides the following capa-

(|) System Cold Start/Restart.

(2) Function Migration Support.

(3) Overlays for local memory of General Purpose Computers.

(4) System Table Backup.

(5) Storage for system-wide common files.

(6) Program Checkpointing.

These requirements are discussed in the following.

To support the first requirement, the mass memory should be able to hold a

copy of all the programs and data necessary to start the system. These

include all those programs that are not in the nonvolatile (PROM) memory

of the General Purpose Computers. For cold start, each GPC loads its vol-

atile program memory (RAM) from the mass memory. An initial version of

the system tables for bootstrapping the system will also be in the mass

memory.

The second requirement implies that a copy of m igratable functions (code)

is present in the mass memory. Typically, the destination GPC will read

this copy into its local memory unles_ it happens to already have the code

resident. Mass memory may also be used to transfer data associated with

the migrating function. The source GPC would write the data into the mass

memory and the destination GPC would retrieve the data from the mass memo-

ry.

The memory overlay requirement implies that some code that is needed in

later phases of the mission will be initially resident only in the mass
memory. It will be read into local GPC memories as needed during the mis-
sion.

A copy of the system tables can be maintained in the mass memory for back-

up in case theprimary copy is lost due to power transients.

The mass memory will also be used for storage of system-wide common files.

Finally, the mass memory may also be used to store program checkpoint data

to support function restart in the same computer or function migration to

another computer.

To support the functional requirements stated here it is necessary that

the mass memory have sufficient speed to support large code transfers nec-

essary for function migration. It should be nonvolatile and it should

have high reliability (at least capable of masking all single faults).

There will be two parts of the mass memory: read-only and read/write.

Most of the code will be stored in the read only part of the memory. Some

of the code may be in read/write part to support inflight alteration of
code for some applications. The data areas will mostly be read/write

although some data such as display overlays will be in read-on]y part.

3.1.} System Services The AIPS system software provides numerous ser-
vices in support of user applications. These services include functions

invoked explicitly by applications programs, as well as functions per-

formed autonomously by the system to maintain proper operation. These

services can be organized in six broad categories as shown in Figure 2 on
page 11.

To facilitate growth and change, testability, system integration, and

software fault tolerance, the AIPS system software will be organized as a

series of layers, where each layer provides services to the layers above

through well-defined interfaces. Since each layer hides implementation

details from the other layers, the impact of a chang_ewhich does not alter

the interface is confined to the affected layer. Each layer is allowed to

use only services provided by lower layers in the hierarchy. This means

that if an interface is changed, it affects only the layers above. Adher-

ence to this rule also aids integration, testing, and exception handling.

Exceptions will be handled in the layer in which they occur unless this

becomes impossible, in which case the problem is passed to higher layers
for resolution.

Each genera] purpose computer (GPC) in the AIPS system has essentially the

same layered operating system, except that one of the computers, desig-

nated the Global Computer, performs certain, additional global functions.

Most of the upper layers of the operating system have global functions

associated with them, as will be described. The global functions are not

time critical for the operation of the AIPS system, and can be migrated to

another GPC if necessary.

The implementation of the lowest layer of the operating system for the

multiprocessor wi]l be substantially more complicated than that for the

uniprocessor, although the services provided to the user will be similar.

The operating systems may also vary with respect to the detailed I/0 con-

figurations that they support.

The AIPS system services are now described briefly, starting at the bottom

of the hierarchy. Section 3.5.2 of this document describes the system

software in greater detail.

3.1.3.1 Local Computer Management This layer comprises essentially the
local operating system of each general purpose computer (uniprocessor and

multiprocessor). It provides a reliable underlying machine for each of

the layers above, and hides the details of local computer resource manage-
ment.

At this layer, the AIPS system provides the following user services:

10

USER

APPLICAT [ON

FUNCTION

MANAGEMENT

lIME AND FILE

MANAGEMENT

MASS MEMORY

MANAGEMENT

NoN-LocAL 1/0

MANAGEMENT

[C NETWORK

MANAGEMENT

LOCAL COMPUTER

MANAGEMENT

Figure 2. System Services

Functiop execution - task scheduling, dispatching, suspension, and

termination. Scheduling is based on priority, time occurrence, or

event occurrence.

Local memory management - dynamic allocation and dealIocat[on for

each task.

Local intertask communication - supporting parameter passing as
well as mailboxes.

Exception handling - both user-defined and system-defined

exceptions are recognized. If requested, AIPS will pass control to
a user-designated routine when an exception occurs.

Local I/0 - manages local I/0 buses and dedicated I/0.

In addition, the AIPS system will initialize and maintain reliable opera-
tion of the local GPC. This includes self test; hardware failure

detection, identification, and reconfiguration (FDIR); and processor

initialization, synchronization, and restart.

3.1.3.2 IC Network Management This layer and the layers above comprise

(essentlally) the network operating system portion of the AIPS system

software. This layer provides a network of GPCs, capable of reliably com-

municating with each other via the intercomputer bus, while hiding the

details of that communication.

At this layer, AIPS provides the following user service:

Interfunction communication - enabling user functions to communi-

cate with each other without needing to know which GPC the func-

tions are located on. It supports parameter passing as well as
mailboxes.

11

In addition, the system will initialize and maintain reliab]e operation of
the IC network. This includes self test, a periodic subscriber poll, net-

work FDIR, and network initialization. These functions are global, except

that each GPC participates in failure detection, and responds to g]obal
requests.

3.1.3.3 Nonlocal I/0 Management This layer is responsible for the func-

tioning of the global and regional I/0 networks, configuring and managing
them as I/O buses, while hiding the details of I/0 management.

At this layer, AIPS provides the following user service:

- access to the devices of the global and regional I/0
buses. Certain generic device drivers will be available, while the

user may have to develop drivers for specialized devices.

In addition, AIPS will initialize and maintain reliable operation of the

g]obal and regional I/0 networks. This inc]udes self test, periodic sta-

tus po]ls, network and device FDIR, and network initia]ization. The glo-

be] computer manages the global I/0 network, and designates a manager for
each regional I/O network. Each GPC participates in failure detection,

and responds to requests from the global and regional managers.

3.1.3._ Mass Memory Management This layer provides an AIPS system with a

mass memory capability for storing programs and data. It provides the
following service=

Access to the mass memory - allows each GPC to use the mass memory
to support AIPS system functions and user applications.

In addition, AIPS must initialize and maintain reliab]e operation of the
mass memory, including se]f test, FDIR, and contention resolution.

3.1.3.5 Time and File Management Thls layer provides a reliable network

of communicating GPCs having a common time base and file system. The
details of time distribution and file system implementation are hidden.
It provides the following user services:

System time - user functions on each GPC will be able to determine

system time with granularity and skew as specified in the section

on performance goals.

Basic file ooeratlons - create, delete, open, close, read, write;

the file is used as an abstraction to indicate the transfer of

sequences of data values between a user program and external sourc-

es or destinations which may include the mass memory, local memory,

and input/output devices. The file services to be provided are

those that support the use of files in the Adal language.

Ada is a registered trademark of the U.S. Department of Defense
(AJPO) .

12

The time function is distributed in that each GPC must maintain its local

time aligned to the system time. The global computer selects the source

for system time, broadcasts its value, and performs the associated FDIR.

In addition, AIPS initializes the file system, maintains file directo-

ries, and provides for file system FDIR.

3.1.3.6 Function Management This layer manages the assignment of func-

tions to processors in the AIPS system, while hiding the details of the

assignment process. It provides the following user services:

• Initia] function assignment - supporting initial program loading.

• Pre-_lanned reassignment - based on mission phases, events, or
time.

• Pre-blanned function migration - in response to failure or repair
events.

The user must ensure that the preplanned assignments, reassignments, and

migrations are feasible and are supported by the system I/0 configuration.
The AIPS system will raise an exception if an infeasible migration is

requested.

These functions are under global control, although each GPC is responsible
for carrying out global requests.

3.1.4 Proof-of-Concept System To demonstrate feasibility of the

Advanced Information Processing System concept described in the preceding
sections, a laboratory proof-of-concept (POC) system will be built. The
major ideas and ooncepts that are novel to the AIPS and that need to _e

demonstrated in the laboratory system are as follows.

(1) A multiprocessor that is both fault as well as damage tolerant.

(2) A uniprocessor that is fault and damage tolerant.

(3) An intercomputer communication medium (I/0 Network) that is fault

tolerant, damage tolerant, and has demonstrable growth capability.

(h) An Input/Output mechanism (I/0 Network) that is reliable, and dam-

age tolerant.

(5) A fault tolerant mass memory.

(6) Processing sites of varying redundancy levels, preferably at least

one each of simplex, duplex, triplex, and hybrid redundancy.

(7) A Network Operating System that supports such requirements as

funct{on m{gration, system reconfiguration, flexibility, and fault
tolerance.

(8) Enough processing sites to make the function migration, system

reconfiguration, and I/0 and IC network reconfiguration meaningful
and nontrivial.

13

(9) A Local Operating System in each processing site to perform func-

tions in support of the overall operation and demonstration of the
system.

A system configuration that can be used to demonstrate and prove these

concepts is shown in Figure 3 on page 15. It consists of five processing

sites which are interconnected by a triplex circuit switched network.

Four of the five GPCs are unlprocessors, one simplex, one duplex, and two

triplex processors. The fifth GPC is a multiprocessor that uses parallel

hybrid redundancy. The redundant GPCs are to be built such that they can

be physically dispersed for damage tolerance. Each of the redundant chan-
nels of a GPC could be as far as 5 meters from other channels of the same
GPC.

Each of the triplex fault tolerant processors (FTPs) and the fault to]er-

ant multiprocessor (FTMP) interfaces with three nodes of the Intercomput-

er (IC) node network. The duplex and the simplex processors interface

with two and one nodes, respectively.

The mass memory is a highly encoded memory that interfaces with the GPCs

on a triplex multiplex bus.

The Input/0utput is mechanized using a 16 node circuit switched network

that interfaces with each of the GPCs on I to 6 nodes depending on the GPC
redundancy level.

Redundant system displays and controls are driven by the Global Computer
and interface, through the I/0 network.

Each GPC has a Local Operating System and a portion of the Network Operat-

ing System. For the proof-of-concept system, initially the FTMP will be

the Global Computer.

3.1.4.1 Proof-of-Concept Building Blocks Major hardware building blocks
of the AIPS Proof-of-Concept configuration are as follows:

(1) Fault Tolerant Processors The POC system contains one simplex, one

duplex, and two triplex fault tolerant processors. Each channel of

the FTPs consists of a computational part and an Input/Output part.

The first part contains a computational processor (CP), memory,
timers and clocks. The second part contains an Input/Output pro-
cessor (lOP), memory, timers and clocks. The lOP interfaces with
the I/0 and the IC nodes. The CP and the lOP have a shared inter-

face to the mass memory. The redundant processors are tightly syn-

chronized using a fault tolerant clock. Data amongst redundant

channels is exchanged on point to point links such that the system

is protected against simplex source faults. The data exchange
hardware also performs the fault detection and masking functions.

Apart from redundancy, there are other features that provide hard-

ware and software fault tolerance. These include watchdog timers,

processor interlocks, virtual memory, and a privileged operating
mode.

14

I/0

MULTIPRO-
CESSOR

ADD-ON

FTP

!

i
FTP

13)

FTP

(3)

I/O

It0
FTP

!
!
!

PROCESSOR(II

Figure 3. AIPS Proof-of-Concept Configuration

(2) Fau1_ Tolerant Multiprocessor The POC system contains one fault

tolerant multiprocessor. The FTMP has processors which are simi-

lar to the FTP processors. Each processor has its own local memo-

ry, timers, and clocks. Processors are organized in triads. Each

triad consists of three processors. Members of a given triad oper-

ate in tight synchronism and fault detection and masking are per-

formed in hardware. Dynamic reconfiguration is used to rearrange

processor triads following a failure. Hardware support is pro-

vided for this dynamic reconfigurability and parallel hybrid

redundancy. A11 processor triads have access to a shared memory.

Shared memory organization is similar to processor organization.

The processor-shared memory communication is on a fully cross-

strapped bus. This reduces bus contention and provides damage tol-

erance. The FTMP interfaces with the external world through the IC

Network nodes, the I/O Network nodes, and the Mass Memory buses.

Not all processors in the FTMP have a11 of these interfaces. The

details of the proof-of-concept configuration of the FTMP, such as

number of processors, shared memory modules, and their external

interfaces, will be determined during the preliminary design. The

15

fault tolerance features in the FTMP are similar to those described
for the FTP.

(3) IntercomPuter Network The intercomputer network consists of three

identical layers of a 5-node circuit switched network. This tri-

plex network provides for fault and damage tolerant communication

amongst all GPCs. Each of the nodes in the network is a S-ported

circuit switching device. One of the ports interfaces with a sub-

scriber GPC and the other four ports connect the node to other

nodes in the same layer of the network. The three layers of the

network are not connected to each other. A node can connect any

input port to one or more of its output ports when commanded to do

so by the Global Computer. Once all the nodes in the network have

been configured by the Global Computer the network operates exact-

ly as a virtual multiplex bus. Nodes detect protocol and trans-

mission errors and record these for later retrieval and analysis by

the Global Computer.

(4) InDut/Ougput Network The I/0 network consists of a 16-node network

that is similar to one layer of the IC network. Six of these nodes

interface with the FTMP, 3 each interface with the triplex FTPs,
two with the duplex FTP and one with the simplex processor.

(5) Mass Memory The AIPS mass memory is a fault tolerant memory that

interfaces with the GPCs on a triplex multiplex bus. The mass mem-

ory has a triplex interface unit, one for each of the three mass

memory buses. Redundant address, data, and command words from the

GPCs are received, deskewed, and voted by each of the three inter-

face units. For memory read operations, each interface unit

responds with data on one mass memory bus. The requesting GPC

votes on the redundant data received on the triplex bus. Most of

the mass memory is read-only while some of it is read-write.

3.1.4.2 Architecture of AIPS Building Blocks The following sections

describe the architecture of each of the AIPS building blocks.

3.1.4.2.1 Fault Tolerant Processor The architectural description of the

FTP is divided into three sections: Software View, Hardware View, and
External Interfaces.

3.1.4.2.1.1 Fault Tolerant Processor: Software View The FTP or the unipro-

ces_sor architecture from a software viewpoint appears as shown in Figure 4
on page 18. The uniprocessor can be thought of as consisting of two sep-

arate and rather independent sections: the computational core and the
Input/Output channel.

The computational core has a conventional processor architecture. It has

a CPU, memory (RAM and ROM), a Real Time Clock, and interval timer(s).

The Real Time Clock counts up and can be read as a memory location (a pair
of words) on the CP bus. Interval timers are used to time intervals for

scheduling tasks and keeping time-out limits on applications tasks (task

watchdog timers). An interval timer can be loaded with a given value
which it immediately starts counting down and when the counter has been

decremented to zero, the CPU is interrupted with a timer interrupt. A

16

watchdog timer is provided to increase fault coverage and to fail-safe in
case of hardware or software ma]functions. ThE watchdog timer resets the

processor and disables a11 its outputs if the timer is not reset period-
ically. The watchdog timer is mechanized independently of the basic pro-

cessor timing circuitry.

There also appears on the processor bus a set of registers, called the

data exchange registers. These are used in the redundant fault tolerant

processor to exchange data amongst redundant processors. From a software
viewpoint, thls is the only form in which hardware redundancy is mani-

fested.

On a routine basis the only data that needs to be exchanged consists of

error latches and cross channel comparisons of results for fault

detection. These operations can be easily confined to the program respon-

sible for Fault Detection, Isolation, and Reconflguration. Voting of the

results of the redundant computational processors is performed by the

Input/Output processors. Therefore, the remaining pieces of the Operat-

ing System software and the applications programs need not be aware of the

existence of the data exchange registers. The task scheduler and dis-

patcher, for examplTe, can view the computational core as a single rellable

processor.

The other half of the processor is the Input/Output channel. The I/0

channe] has a CPU (same instruction set architecture as the CP), memory

(RAM and ROM), a Real Time Clock, and an Interval Timer(s). This part of

the I/0 channel is identical to the CP except that it has]ess memory than

the CP.

The lOP has interfaces to the intercomputer bus, one or more I/0 buses,

and memory mapped I/0 devices. The CP and the lOP also have a shared
interface to the system mass memory. These external interfaces of the FTP

will be discussed in the next two sections.

The lOP and CP exchange data through a shared memory. The lOP and CP have

independent operating systems that cooperate to assure that the sensor
values and other data from Input devices is made available to the control

laws and other applications programs running in the CP in a timely and

orderly fashion. Similarly, the two processors cooperate on the outgoing
information so that the actuators and other output devices receive com-

mands at appropriate times. This is necessary to minimize the transport

lag for closed loop control functions such as f]ight control and struc-
tural control.

The CP and lOP actions are therefore synchronized to some extent. To help

achieve this synchronization in software, a hardware feature has been pro-
vided. This feature enables one processor to interrupt the other proces-

sor. By writing to a reserved address in shared memory the CP can

interrupt the lOP and by writing to another reserved location the lOP can
interrupt the CP. Different meanings can be assigned to this interrupt by

leaving an appropriate message, consisting of commands and/or data, in

some other predefined part of the shared memory just before the cross-

processor interrupt is asserted.

17

_v

IMEP

lOP BUS

MM BUS

ORYI
o,E°I

COMPUTATIONAL
CPU

l
CP BUS

INTERVAL TIMER
+

REAL TIME CLOCK
+

WATCHDOG TIMER

IC I/O
BUS BUSES

I
SHARED JMEMORY

INTERVAL TIMER I

REAL TIME CLOCK I

WATCHDOG TIMER I

1

Figure 4. Fault Tolerant Processor Architecture: Software View

For routine flow of information in both directions, the shared memory will

be used without interrupts but with suitable locking semaphores to pass a

consistent set of data. The interrupts can be used to synchronize this

activity as well as to pass time critical data that must meet tight

response time requirements. In order to assure data consistency it is

necessary that while one side is updating a block of data the other side

does not access that block of data. This can either be implemented

through semaphores in software or through double buffering. Hardware sup-

port for semaphores, in the form of test & set instruction, is provided in
the 10Ps and CPs.

There are many attractive features of this architecture from an opera-

tional viewpoint. The most important of these is the decoupling of compu-

tational stream and the input/output stream of transactions. The

computational processor is totally unburdened from having to do any I/0

transaction. To the CP al] I/0 appears memory mapped. And this not only

includes I/0 devices but also a]I other computers in the system as well.

That is, each sensor, actuator, switch, computer, etc. to which the FTP

interfaces can simp]y be addressed by writing to a word or words in the

shared memory.

18

Data from other processing sites is received by each IOP on the redundant

IC buses, hardware voted, and then deposited in their respective shared

memories. Simplex source data such as that from I/0 devices,)oral pro-

cessors, etc. is received by the single I/0 processor that is connected to

the target device. This data is then sent to the other two I/0 processors

using the IOP data exchange hardware. The congruent data is then deposit-

ed in all three shared memory modules. In either case, the computational

processors obtain all data from outside that has already been processed

for faults and source congruency requirements by the I/0 processors.

The data exchange mechanism appears to the software as a set of registers

on the processor bus. Data exchange between redundant processors takes

place one word at a time. Two types of data exchanges are possible= a sim-

plex exchange or a voted exchange. The purpose of a simplex exchange is

to distribute congruent copies of data that is available only in one chan-
nel of the FTP to all other channels. The purpose of a voted exchange is

to compare and vote computational results produced by redundant proces-

sors. In the FTP architecture, these exchanges are mechanized as follows.

To perform a voted exchange, each processor writes the value to be voted

in a transmit register called X V. Writing to this register initiates a

sequence of events in hardware w_ich culminates with the voted value being

deposited in the receive register of each processor. The processor can

read the receive register at this point to fetch the voted value. The

whole transaction takes of the order of 5 microseconds. The hardware is

designed to lock out access to the receive register while the exchange is

in progress. If theprocessor tries to read the receive register before
the transaction has comp]eted, the processor hangs up. As soon as the

data becomes available, the processor is release_ and the register read

cycle completes normally. The processor wait is transparent to the soft-

ware. It is not necessary to time the interval between writing of the

transmit register and reading of the receive register in software. The

two operations can be performed as a sequence of two instructions without
an intermediate wait.

To perform a simplex exchange, the data to be transmitted is written to

one of the simplex transmit registers, in the triple redundant version of

the FTP there are three such registers. They are called X_A, X_B, and

X C. X_A is used to transmit simp]ex data from channel A to a]l others.

STmilarly X_B transmits data from B and X_C transmits data from C. Writ-

ing to one of these registers initiates a sequence of events in hardware

which culminates with a congruent copy of the data word being deposited in

the receive register of each processor. The receive register can be read

at this point by each processor to fetch the congruent copy of the simplex
data.

It has been pointed out earlier that the software appearance of the redun-

dant FTP is the same as that of a simplex processor. A]] redundant pro-

cessors have identica] software and execute identical instructions at a]]

times. This architecture is carried forth in the data exchange hardware

and software as well. The data exchange hardware is designed such that

a]l redundant processors execute identlcaI instructions when exchanging

data. As an example, consider a simplex source transmission from channel

A. Assume that channe] A has a sensor value in its interna] memory

19

location, called MEMORY, that it needs to send to channels B and C. This

requires execution of the following sequence of four instructions:

I LOAD RO,MEMORY

2 STORE RO,X_A

3 LOAD RO,X_R

4 STORE RO,MEMORY

The data to be transmitted is fetched from memory (instruction 1) and

written to transmit register X_A (instruction 2). All three processors

execute these instructions. However, only processor A's value is trans-

mitted to the receive register of A, B, and C. Transmissions from B and C

are ignored by the hardware. This will be explained in the next section

which deals with the FTP architecture from a hardware viewpoint. In

instruction 3 all processors, read their receive register (X_R) to accept

the congruent value of the data transmitted by A. In instruction 4 this

value is transferred to an internal memory location.

Voted data exchange requires a similar sequence of instructions. The only

difference is that in instruction 2, rather than storing the value in one

of the simplex transmit registers, it is stored in the voted exchange reg-
ister, X V.

3.1._.2.1.2 Fault Tolerant Processor: Hardware View The triplex FTP

architecture from a hardware viewpoint appears as shown in Figure 5 on
page 22. There are three identical hardware channels. Each channel has

a computational processor, an I/0 processor, and some hardware that is
shared by the CP and the lOP. The internal details of the CP and the lOP

such as the CPU, memory, timers, etc., have been described in the preced-
ing section. They are not shown in Figure 5 so that other details such as

the redundancy dimension be shown more clearly.

The common hardware consists of a shared memory, the data exchange regis-

ters, and the mass memory interface. The shared memory is used exchange

information between the CP and the IOP while the data exchange registers

are used to exchange information between redundant copies of the CP or

lOP. Common hardware access conflicts between the CP and the lOP are

resolved by a bus arbitrator. The bus arbitration logic is designed such

that each channel resolves the conflict in favor of the same processor

(that is, either the lOP or the CP) deterministically. This is necessary

to maintain tight synchronism between redundant copies of processors.

This is only one of several conditions necessary for synchronous opera-

tion. Stated in more general terms, two hardware conditions are neces-

sary. First of a11 there should be a common time base that is used by all

channels for timing events. Second, all timing events should be determin-

istic in nature. If these two hardware conditions are met, the redundant

channels can be synchronized. Once they are synchronized, they will stay

synchronized if all channels execute identical software.

To obtain a common time base, the oscillators in redundant channels are

phase locked to each other. The details of this mechanization are covered

in section 3.5.1.1.3.4 (FTP Fault Tolerant Clock). To assure that all

timing events are deterministic, it is necessary to use a synchronous bus

internal to each processor. As an example, when a CPU references a memory

2O

location on the bus the memory cycle should complete in a fixed time

interval. This does not necessarily imply that a11 memory cycles should

take the same time. It is possible in the FTP architecture to mix differ-

ent types of memories, such as PROM and RAM, which may have different

access times. The only necessary condition is that access to a given

location always take the same length of time. This also applies to any

I/0 activity performed by the processor. The hardware is built such that

when a processor accesses a device available in only one channel the other

processors wait the same length of time.

A very important aspect of the FTP architecture is the [nterconnection

hardware between redundant channels. This hardware serves three pur-

poses. First of a11, it provides a path for distributing simplex data

available in only one channel to a11 other channels. Second, it provides

a mechanism for comparing results of the redundant channels. And third,

it provides a path for distributing and comparing timing and control sig-

na]s such as the fau]t tolerant clock and external interrupts.

To distribute simplex data from one channel to all others without intro-

ducing sing]e point faults in the design, it is necessary to adhere to

source congruency requirements. These are explained in Section 6.3. One

of these dictates that in order to tolerate single faults it is necessary

to provide four fault containment regions. In the triplex FTP architec-

ture six fau]t containment regions are provided. The triplex processor

provides the basic three fault containment regions. Three additional

regions are provided in the form of interstages which receive data from

processors and rebroadcast them back to processors. The interstages are

mechanized such that they have independent voltage and timing reference.

This assures that faults in processors would not propogate to interstages

and vice versa. Since an interstage is essentially a buffer with receiv-

ers and transmitters, it is relatively a small and simple piece of elec-

tronics. It is, therefore, much more convenient to provide three

additional fault containment regions rather than just one as required for

source congruency. It also makes the FTP architecture symmetric.

As explained in the preceding section, the data exchange hardware appears

as a set of five registers on the processor bus. Four of these (X_A, X_B,

X C, and X_V) are the transmit registers and the fifth one is the receive

register, X R. For simplex source exchanges, say, a 'from A' exchange,

data in X_A register in channel A is transmitted to the three interstages.

The interstages rebroadcast this data to every processor. The three

copies received by each processor are voted in hardware on a bit-by-bit

basis. The voted result is deposited in X_R. For voted exchanges, each

channel writes the data to be voted in X_V register. Writing to X_V

results in the data being transmitted to the channel's own interstage.

The second half of the operation is the same as for simplex exchange. In

both cases, the exchange hardware masks any single faults while voting on

three copies and also records the source of fault in an error latch. The

error latch can be read by software as a memory location.

The data exchange hardware is explained in greater detail in section

3.5.1.1.3.1.

21

I/O & IC
NETWORKS

< II
DATA

EXCHANGE

os >i IARBITRATOR

II

I/O & IC-
NE TWORKS

ARBITRATOR CP

II

DATAI IS.A_EOI A
EXCHANGE B MM BUSES

" I MEMORY I C

I/O & IC
NETWORKS

osF 1ARBITRATOR CP

II

DATA"1IS"AREDi A
EXC.ANG_I_OR_I _ MM BUSES

Figure 5. Fau]t Tolerant Processor Architecture: Hardware View

3.1.4.2.1.3 Fault Tolerant Processor: External Interfaces The external

devices that interface with the FTP are the mass memory, the Intercomputer

network, and the I/0 network. Figure 5 on page 22 shows the interface

between a triplex FTP and the triply redundant mass memory bus. This

interface hardware is shared in each channel by the CP and the lOP. Each

channel of the FTP is enabled on one of the three buses. The FTP transmits

commands and data synchronously on three buses to the mass memory where

they are received and voted in hardware. The interface hardware performs

the necessary parallel to serial data conversion, appends cyclic redun-

dancy check byte (CRC), and transmits serial data on the bus. Each pro-

cessor channel listens to all three mass memory buses. Data received from

the mass memory is voted in hardware on a bit-by-bit basis. Any disagree-

ments on the mass memory bus are recorded in error latches for later ana-

lyis by software. Any CRC failures are also recorded separately. Voted

data is then converted from serial to parallel format.

Figure 6 on page 24 shows the interface between a triplex FTP and the tri-

ply redundant Intercomputer Network.

22

The IC network interface is dedicated to the I/0 processor. Other than

that, it is very much like the mass memory interface. Each lOP listens to
all three IC networks but can transmit on only one [C network. The IC net-

work interface circuitry is responsible for parallel to serial data con-

version, resolving network contention, and transmitting data on the net-

work. In the other direction, the network interface hardware]istens to

three bit streams, deskews them, votes and masks single faults and con-

verts the voted bit stream from seria] to parallel. It stores any disa-

greements on the networks in error latches or registers. Non compliance

with the network protocol is also recorded separately -for each of the

three networks.

An lOP also interfaces to one or more I/0 networks. This interface is
different from the IC network interface to the extent that the I/0 net-

works may not be redundant. Redundant I/0 networks interface with the FTP

the same way as the IC network nodes. For simplex I/0 networks, it is nec-

essary that when the processor is communicating with an I/0 device all

other processors execute the same software and wait identical]engths of
time to stay synchronized. Also, any data received from the I/0 devices
must be distributed to a]l other processors using the data exchange regis-

ters. Although an I/0 network may not be redundant, an FTP may have more
than one connection to an I/0 network through multiple lOPs.

An I/0 network may be dedicated so that only those I/0 devices that are

used solely by this FTP are on this network. Or the I/0 network may be a

shared network that connects multiple computers to shared I/0 devices.

Finally, an lOP may also have local dedicated I/0 devices that can be

accessed directly by the lOP as memory, locations. The memory mapped I/0

may consist of local switches, discretes, A/Os, D/As and interrupt driven
devices. This interface differs from dedicated I/0 bus interface in the

sense that I/0 signals on the bus may be already conditioned and processed

by a local processor and the lOP interfaces through this bus to the local
processor which may control a number of I/0 devices.

Although it is possible to interface interrupt driven I/0 devices to the

lOPs, none will be included in the proof-of-concept system.

An lOP may transmit on an IC bus, a shared I/0 bus, or a dedicated I/0 bus

only if it is enab]ed to do so by a majority of the lOPs. An lOP can a]so
disable itself any time.

The interface of an FTP to the IC buses is somewhat different if the FTP

redundancy level is not the same as the IC redundancy level. For example,

if the FTP is a duplex system rather than a trip]ex then there wil] be only

two lOPs, one lOP per channel. Each lOP wil]]isten to and vote on all

three IC buses and it wii] transmit on one IC bus. Transmissions from

duplex processors will, therefore, be heard only on two out of three bus-

es. Similarly, simplex processors wi]l listen to all buses but wil] tran-

smit on only one bus. Voting logic in the bus interface circuits is

suppressed when the transmitting processor is simplex. It is necessary to

rely on compliance with bus protocol to detect errors.

23

Figure &. FTP Interface to IC and I/0 Networks

The next topic of discussion is the interface of the system in degraded

mode. The FTP can degrade in 3 ways, failure of an .lOP, failure of a CP,

and the failure of the shared hardware.

When an IOP fails, the IC bus interface would degrade from trip]ex to a

duplex configuration. Each of the other two lOPs would listen to a11
three IC buses but transmissions from this FTP would be heard by other

computers only on two buses. At the receiving sites fault masking would

be replaced by fault detection. Since there is some inherent coded redun-

dancy in data being transmitted on each bus, one can hope to identify the

second fault with fairly high coverage. This would normally be the case

when communicating to a dual-redundant computer on the network under nor-

mal circumstances.

The other effect of the failure of an I/0 processor is the loss of I/0

devices attached to that processor. Actually only those I/0 devices that

were connected only to the failed processor would be lost. If the I/0

devices are cross-strapped to other IOPs through the I/0 bus, for example,

they would still be accessible via the other I/0 processors.

Finally, the loss of an lOP also means that the CP attached to that lOP

does not have access to any inputs. In other words, failure of any ele-

ment in a channel can be considered the same as failure of the whole chan-

nel. That is, if an lOP, a DPM or a CP fails in a channel one could shut

down a11 the elements in that channel of the FTP. Although this is the

most convenient way to operate the system from a system software view-

point, one can use more sophisticated strategies to obtain reliability

24

from the system. This, however, is achieved at the expense of more com-

plex system software.

Specifically, if an lOP fails then the corresponding CP loses access to

data being provided by that IOP through the shared memory. But since the

CPs are cross-strapped to each other through data exchange hardware it is

possible to provide the target CP the voted value of the inputs to the

other two CPs. The same can be done on the 10P side when a CP fails. If

the shared memory fails either side can get around the fault by cross-

exchanging data. This will be the POC operational strategy.

3.1.4.2.2 Fault Tolerant Multiprocessor The following two sections

describe the software appearance of the multiprocessor and the redundancy

and fault tolerance dimension of the machine, respectively.

3.1.4.2.2.1Multiprocessor Software Appearance The multiprocessor dis-

cussion is divided into three parts: processors, shared memory, and the

external interfaces. These three parts are discussed in the following

sections.

3.1.4.2.2.1.1 Processors The multiprocessor architecture from a software

viewpoint appears as shown in Figure 7 on page 26. This figure does not

show the redundancy dimension of the computer. FTMP, from a software

viewpoint, appears as a conventional, homogeneous multiprocessor. There

are a number of processing elements that have access to a common memory,

called the shared memory. Each processor has a local memory which is com-

posed of Read Only Memory (ROM) and Read/Write Memory. Although not all

of the programs are always resident in the local memory, they must be

loaded there from the shared memory before they can be executed. The

local PROM is used to hold the bootstrap loader, cold start and restart

programs, frequently executed parts of the operating system, and high fre-

quency applications programs. All other programs are loaded into the RAM

on a demand basis.

Each processor has internal interval timer(s) that can be set to any

16-bit value under program control. The interval timer decrements this

count and interrupts the processor when the count reaches zero. Interval

timers can be used for scheduling highest frequency tasks and also as task

watchdog timers.

Communication between processors can bevia the shared memory or it can be

via Interprocessor Communication (IPC) Buffers. The shared memory path is

the slower of the two paths. The sender can write the message in the

shared memory, but it does not arrive at its destination until the receiv-

ing processor reads its mail box. An alternative to this is the IPC Buff-

er. A processor can write to any other processor's buffer. The receiving

processor is interrupted when one of the buffer locations is written into.

The receiving processor's IPC Interrupt Handler can then read the message

in its buffer. The buffer length is of the order of 16 words. That is, it

is not a large memory array. For large data transfers, shared memory

would still be used although one could pass a shared memory pointer using

the IPC mechanism.

25

P

!

GLOBAL I/O BUS

MASS MEMORY BUS

INTERCOMPUTER BUS

li
MULTIPROCESSOR BUS

SHARED
MEMORY

MULTIPROCESSOR

CONTROL
REGISTERS

REALTIME
CLOCK

Figure 7. FTMP Architectu're- A Software View

3.1.4.2.2.1.2 Shared Memory The shared memory can be accessed by the

processors using the mu]tiprocessor bus. Contention for the bus amongst

multiple processors is resolved in hardware. The hardware a_so provides

the capability to test and set a word in the shared memory in a single
atomic operation. Access to data elements that are shared amongst multi-

pie processes can be limited to one process at a time by associating a

lock or semaphore with each shared data set.

Although the shared memory appears as a single monolithic unit to the
software, it should be noted here that it is, in fact, composed of several

segments. Such a segmented shared memory, coupled with dedicated buses

from processors to memory units, makes it appear as a muItiported memory.
All segments of the shared memory can be accessed simultaneously if dif-

ferent processors happen to request access to different segments. This
feature should be taken into account when locking data sets in the shared

memory.

There are several other elements of the multiprocessor that can be

accessed by the processors using the memory bus. One of these is the Real
Time Clock (RTC). The Real Time Clock is a 32-bit counter that counts up.

The RTC can be set to a given value by writing to its 'memory' address. It

can be read as a two word value on the memory bus also. Reading the high

order word automatically latches the low order word so that the 32-bit
value of the RTC is read as a consistent set.

IPC buffers also appear as shared memory addresses as far as write oper-

ations are concerned. They can only be written to on the multiprocessor

26

bus. They can be read only by the host processor on the internal proces-
sor bus.

Other reglsters in the shared memory address space can be grouped under
the heading of Multiprocessor Control Registers. Their functions
include:

(I) Memory Relocation (Write Only): This assigns a shared memory mod-

ule to a given address space.

(2) Triad Identification (Write Only on multiprocessor bus, Read 0nly

on processor bus): This assigns a processor to a triad.

(3) CPU Control (Write Only on multiprocessor bus, Read Only on proces-
sor bus): This controls various CPU operations such as reset, go,
etc.

(4) Bus Selection (Write Only on multiprocessor bus): This tells each

processor and memory which buses to listen to.

(5) Error Latch (Read Only on system bus): It records disagreements on

the multiprocessor bus.

3.1.4.2.2.1.3 External Interfaces External interfaces of the FTMP con-
sist of interfaces to other GPCs through IC nodes, interfac_ to I/0

devices through I/0 nodes, and interface to Mass Memory through Mass Memo-
ry buses. Not all FTMP processors have all external interfaces. Some

processors may, in fact, have none of these interfaces. These processors

perform only computational function in the FTMP.

At any given time, one processor triad is assigned to communicate on the
IC network. Bus interface hardware performs a bit by bit majority vote on

incoming redundant data. Each processor then should have an identical

copy of the incoming data. For simplex data, the voting is bypassed and
it is necessary to perform source congruency. This is done by simply

writing the simplex data into shared memory. Voters in the shared memory

perform majority voting on three copies of the word received from the
three processors. The voted data then becomes the congruent value of the

simplex word.

Mass memory interface is functionally identical to the IC network inter-

face.

The FTMP also has interfaces to one or more I/0 networks. The I/0 net-

works may or may not be redundant. One of the processor triads, wlth

approriate I/0 interfaces, is assigned to the task of managing I/0

devices.

3.1._.2.2.2 Multiprocessor Redundancy & Fault Tolerance Features As

alluded to in the previous section, there is a considerable amount of com-

plexity in the hardware that is largely transparent to the software but is

responsible for making the machine fault tolerant. This complexity arises
from two related features of the muitiprocessor. One, every element in

the system is replicated to some 1eve1. Every major element is at least

27

triplicated, and some have even a higher level of redundancy. Two, all

redundant operations must be compared to detect faults and to mask fau]ts

where appropriate. The fault detection and masking requires considerable

amount of interconnections between redundant elements. These two attri-

butes of the machine, viz., redundancy and intercommunication, are large-

ly responsible for the multiprocessor complexity.

However, the redundant hardware elements are organized in such a fashion

that this complexity is not carried over into the software. In fact, the
other attribute of the machine, viz., the interconnection of the redundant

elements, is what makes the hardware complexity transparent to the user.
This should become clearer as the hardware architecture is described in

the following sections.

3.1._.2.2.2.1 Processors Processor in the multiprocessor, CPs or lOPs,

operate in groups of three, ca]led triads. The three members of a triad
are tlghtly synchronized using a fault tolerant clock. (The clock opera-
tion is described in another section.) Processor organization is such

that any three processors can be formed into a triad with some exceptions
such as the constraints that may be introduced by packaging and external
bus interface considerations. Other than these constraints, a processor

element can be used as a member of a CP triad or an lOP triad. A processor

may be a member of a CP triad at one time and it may be a member of an lOP
triad at some other time.

Once all the available processors have been formed into CP and lOP triads,
the remaining processors (spares), can be used to ishadow' normally oper-

ating triad members. A shadow processor is tightly synchronized with the
three active members of the triad and executes the same instructions as

the active members. It listens to all the buses to obtain the same input

data as the active members. However, it is not enabled to transmit on any

bus.

Each processor has a number of control registers which are either proces-
sor specific or triad specific. All of these registers have a 'Write To'
address that is an extension of the shared memory address space. They

also have a 'Read From _ address that is an extension of the processor's

local memory address space. An example of a triad specific register is

the IPC (Interprocessor Communication) Buffer. An example of a processor

specific register is the Triad Identification (ID) Register. Addresses of
processor specific registers have a Processor ID field in the 'Write To'
address. Addresses of triad specific registers have a Triad ID field in

the 'Write To' address.

There are a number of other system control and status registers that are

accessed in a manner similar to the processor control registers. Examples

of these will be given where relevant.

3.1._.2.2.2.2 Shared Memory The shared memory in the multiprocessor is

triplicated and operates as one contiguous triad. Physically, it is par-
titioned into several smaller segments and the level of replication is at

the segment 1eve1. A processor and a shared memory segment are packaged

together in a box or Line Replaceable Unit (LRU). They share such items
as the fault tolerant clock, LRU power supply, etc.

28

Associated with each memory segment is a Memory Relocation Register (MRR).

This register is analogous to the Processor Triad ID Register in that it

a11ows one to identify the memory triad to which a memory module belongs.

The MRR forms the high order part of the address to which the associated

memory module responds. The MRR itself has an LRU specific address and

can be written to on the multiprocessor bus. Thus, one can group any

three memory modules to form a shared memory triad by relocating them to

the same address space.

3.1.4.2.2.2.3 Processor-Memory Interface The processors and shared mem-

ory segments are fully cross-strapped. Each box or LRU containing a pro-
cessor and a shared memory is connected to every other LRU using dedicated

buses. The processor-shared memory communication works as fol]ows.

Assume there are N LRUs in the multiprocessor. When a processor triad

wishes to write shared memory, each member broadcasts appropriate

address, data, and commands on its transmit bus. Each member of the tar-

get memory triad receives three copies of address, etc. It selects
3-out-of-N transmit buses to listen to this processor triad using informa-

tion from Bus Select registers. The three copies are then voted by each
member of the memory triad and appropriate action (such as storing the

data) taken. Any disagreements are latched in the Processor Error Latches

indicating the identity of the disagreeing processor.

For a memory read operation, the first half of the transaction is similar

to the write operation. Each member of the memory triad broadcasts the

data to the three requesting processors. Each processor in the requesting

triad then receives three copies of the data which it votes in hardware

and also latches identity of any disagreeing memory unit in its Memory

Error Latch.

As indicated earlier there are a number of multiprocessor control and sta-

tus registers. More examples of these have now been cited (MRR, Error

Latches, Bus Select Registers). These registers are assigned addresses in

an extended shared memory address space. They can be accessed by any pro-
cessor triad just as if they were shared memory locations. The interface
hardware to select Transmit Buses, vote on incoming processor requests,

etc. can be the same hardware that is used to access the shared memory in a

given LRU. This not only saves hardware but also makes use of the exist-

ing processor-memory 'bus' that cross-straps all LRUs. In fact, this same
communication medium can be used to write to the Interprocessor Communi-

cation Buffers. Such an arrangement also makes the software appearance of

the machine rather straightforward.

3.1.4.2.2.2.h FTMP Clocking The tight synchronization between processor

elements is maintained using standard fault tolerant clocking techniques

(analog phase locked loop or dlgital compensation) developed previously.

The multiprocessor fault tolerant clock functions as follows.

Each processor and shared memory in every LRU has a common oscillator.
Four of these osci]lators, called the active elements, are chosen to form

the quad-redundant fault tolerant c|ock. (Four c]ock elements are neces-
sary to to]erate aI] single point clock failures). Any four operating
oscillators can be chosen as active elements. The active clocks are dis-

29

tributed to every processor and memory LRU in the system. Each active
element listens to the other three active clocks and locks itself to the

majority. The nonactive clocks phase lock to any three out of four active
clocks. If an active e]ements fails, it is replaced by a previously inac-

tive element. In other words, every clock is sent to every LRU in the sys-

tem. Since the basic philosophy is to have dedicated paths rather than

multiplex buses, there is a dedicated clock bus that goes from every LRU

in the system to every other LRU.

Each LRU in effect listens to three active elements and synchronizes

itself to the majority. This clock is then used for all internal timing

events such as processor clocking, memory clocking, decrementing of the

interval timer, and incrementing of the real time clock.

The real time clock is a 32-bit counter. Such a counter exists in every

LRU and is accessible on the system memory bus. Real time clocks in a11

the LRUs respond to the same system memory address. RTC counters always

respond to write (or set) requests. Thus a11 the real time clocks in the

FTMP can be set to a given time slmultaneously. Once set, they all count

up at the same rate since they are clocked by the fault tolerant clock.

During normal operation, three of the counters are selected to be active.

There is an RTC Select Register in every LRU that determines which three

RTCs to listen to. When one of the counters fails, it is replaced by

another operating RTC counter by updating all RTC Select Registers in all

LRUs.

J.I._.2.2.2.5 External Interfaces The multiprocessor interfaces to the

external world through three different types of buses. Interface to other
General Purpose Computers [s via the IC network. Interface to the I/0
devices is via the I/0 network. And interface to the Mass Memory is via

the MM bus.

The IC network is triply redundant and consists of three layers of a cir-
cuit switched node network. Three of these nodes, one from each layer,

interface with the mu]tiprocessor. On the multiprocessor side one proces-

sor triad interfaces with the triplex IC network (also referred to as the

IC bus) at any given time. For data transmission, each member of this
triad (called the IC triad) transmits on one bus. For receiving data,

each IC triad processor listens to al1 three IC buses, deskews the data
and votes on the three copies in hardware. Any bus disagreements trigger

IC Error Latches in the processor-bus interface hardware. The identity of

the disagreeing bus is stored in the Error Latch. Before performing bit
by bit voting on incoming data, each serial data stream is checked for

compliance with the bus protocol. Any deviations are recorded in error

registers. The error latches and the protocol error registers can be read

by a processor triad on the multiprocessor bus. If the data source GPC is
not redundant, then voting circuitry is bypassed. Simplex source congru-

ency is performed on the incoming data by writing it to shared memory and

reading it back again. Since the IC bus is a contention bus, the FTMP con-
tends for access to the bus with the other GPCs using a distributed arbi-

tration algorithm known as the Laning Po11. Details of the Laning Poll
scheme are described in Section 6.1. One of the FTMP triads that is ena-

bled on the IC bus participates in this poll.

30

The I/O bus is a single layer, circuit switched network. At any given

time, one processor triad (called the lOP triad) is assigned to interface

with the I/0 network. The lOP triad operates in a fashion similar to the

IC triad. However, there is one major difference in that only one IOP

processor transmits on the I/O bus at any given time. All three I/O pro-

cessors listen to the I/0 bus and perform source congruency on a]l incom-

ing data by writing it to the shared memory. Since "the I/O bus is a

contention bus, they all participate in the bus arbitration by each member

|istening to the bus but only one of them actually transmitting on the

bus. Laning Poll is used to arbitrate I/O bus conflicts.

interface to the mass memory triplex bus is very much similar to the IC

bus interface.

The transmissions from a processor on the IC, I/O and MM buses are gated

through enabling gates. The purpose of the enabling gates is to protect

the buses from runaway processors that can not otherwise be turned off.

The enabling gates allow a processor to transmit only if a majority of the
processors agree to do so. Each processor sends an enabling signal to

every other processor. These enabling signals are voted upon to create a

master enable signal in each LRU. If the multiprocessor is built with
some slots initially unoccupied, the master enable signal is created by

voting enable signals from only those processors which are present. Each

LRU also produces a presence signal to indicate whether it is populated.
The presence signal is also helpful in writing FDIR software and therefore

should be made available as part of some LRU specific control register.

].1.4.2.3 Microprocessor Level Architecture The AIPS microprocessor

should have features that support the overall AIPS goals and requirements.
From an architecture viewpoint the desirable features are the ones that

support growth, fault tolerance, and high software reliability. These are

described in the following.

J.l.4.2.J.l Virtual Memory The microprocessor should support virtual

memory.

There are three reasons for this. The first reason is that virtual memory
capability provides simple and straightforward means of providing memory

protection. Access authority of a process for a page of physical memory
can be read/write, read-only or neither. This can be done by changing

bits in the access field of the mapping register or mapping memory by the

operating system. By]imiting access of processes sole]y to program and
data memory needed by that process one can contain the effects of software

faults that result from out of range memory accesses by the faulty soft-

ware module. Although virtual memory is not essential for providing memo-
ry protection, it is nevertheless a very convenient way of implementing
it.

The second reason for having virtual memory is that it conveniently maps

virtual memory into physical memory or secondary storage into primary sto-
rage. In the multiprocessor, the primary storage is the local cache (RAM

and PROM in each processor) while the secondary storage is the shared mem-
ory, Having virtual memory simplifies the task of determining whether the

required program/data is present in local cache or whether it should be

31

loaded from the shared memory. By treating shared memory as virtual stor-
age and cache memory as physical storage, the mapping registers can be set

up to indicate whether a particular page of shared memory is present in

the cache. If it is present the mapping register would point to its cache

address and also indicate the access rights for the current process.

The third reason is that the virtual memory capability can be exploited to

migrate tasks from one processing site to another. By allocating a unique

address space to each such task in the system all the migratable tasks can

be linked with local tasks for each computer where they might ever be
migrated. However, the migratabie tasks need not occupy physical memory

in each target computer. They exist only in the virtual memory. When a

task needs to be migrated to a new processing site, then the physical mem-

ory of the target computer would be loaded with the program/data of the
migrating task and its virtual memory mapping registers altered to ref]ect
the new contents of the physical memory.

Any one of the three uses cited above for virtual memory capability can be

supported by other means. For example, memory'protection can be provided

by segmenting physical memory and attaching access rights to each segment.

However, virtual memory makes it very convenient and straightforward to

support all of these requirements with very little additional hardware and
software.

3.1.4.2.3.2 Privileged Mode

of operation.
The microprocessor should support two modes

The two processor modes are usually referred to as the user mode and the

supervisor mode. The supervisor mode is the privileged mode in which all
operations are legal.. The user mode is more restricted and execution of

certain instructions, called privileged instructions, is disallowed.

Executing privileged instructions in the user mode causes a processor
hardware interrupt.

This feature is necessary for software fault containment. As an example

of this, consider the writing of memory mapping registers. If every proc-

ess has the capability to alter the memory map, then it would not be pos-

sible to provide memory protection. Therefore, it is necessary that only

the operating system, for example, be able to modify the memory map and

the access rights of processes to various memory segments. Similarly, the

ability to change system configuration control registers should only be

restricted to the operating system and applications processes should not

be able to alter the system configuration.

If the microprocessor does not support privileged mode of operation, one

would have to rely heavily on static and dynamic analysis of programs to

prevent unauthorized execution of certain instructions. A]though static
analysis of user programs could catch some unauthorized accesses, it isn't
possible to prove that none wou]d occur at run time.

Privileged mode operation is one more means of containing damage inflicted

by faulty software. One wou]d still do all the static and dynamic testing

of software that one can afford in order to improve the reliability of
each software module but bui]ding a lot of "fire wa]ls" between software

32

modules will assure that unreliability of one module does not affect the

reliability of other pieces of software.

3.1.4.2.3.3 HOL Support The microprocessor should be able to support

High Order Language(s) efficiently.

There are two reasons for this. First, there are considerable advantages

of using HOLs to write software as opposed to using assembler level lan-

guages, These advantages are too numerous and already well known and will
not be discussed here. Suffice it to say that since HOL use is mandated by

AIPS requirements it would be prudent to select a microprocessor that sup-

ports the selected HOL efficiently.

Since Ada has been selected as the AIPS programming language, the selected

microprocessor should ideally support certain features of this language

efficiently. The most important feature of Ada from the fault tolerance

viewpoint is the constraints on variables and the range checking. Cur-

rently, there are no microprocessors that support this more efficiently

than others. That is, none of the commercial microprocessors has bui]t-in

hardware that can expedite range checking.

3.1,4.2.3.4 Memory Address Space The microprocessor should support

"large" direct]y addressable memory space.

There are several reasons for this. The most obvious reason from AIPS

program viewpoint is to meet the growth requirement. One should be able
to "grow" the AIPS architecture in the memory dimension. It is easy to

add physical memory to a processing site if it can be directly addressed

by the microprocessor. If the additional memory is outside the d{rectly
-addressable range of the processor, one has to add hardware such as a mem-

ory management unit to avoid this limitation.

What is "large" of course depends on the application. For AIPS, several

megabytes per processing site would not be an unreasonable requirement.

That is, the microprocessor address field should be at least 22 bits or

longer.

3.1._.2.3.5 Testability The microprocessor should have built-in fea-

tures or support peripheral hardware that aids in the system testability.

Ideally, there should be a trace capability built into the microprocessor.

This would capture a trace of the processor activity and could be used to
trace back processor states from a given trigger event. None of the com-

mercially available microprocessors support this feature in real-time.

Currently, this is accomplished by work station emulators which observe
system activity on the address, data, and control lines. The emulators

and analyzers are continually evolving and becoming more and more sophis-

ticated. It would be hard to build anything in the processor or around it
to match these capabilities. The main drawback of emulators and analyzers

is that they are useful only in the hardware/software development environ-

ment. They obviously can not be used in real time or even off line in an

operational environment for testing and maintenance.

33

Other features that might enhance system testability are the built-in

hardware breakpoint registers, capability to inject faults, and so on.

These features, however, are not likely to be available in any commercial

microprocessors but will be built into the surrounding hardware as dis-

cussed in the testability section.

3.1.4.2.3.6 Performance The microprocessor should have adequate per-

formance to support the AIPS requirements of throughput, dynamic range,
and precision.

Performance can be measured in several different ways. One measure is the

average instruction cycle time. Of course not all microprocessors have

equally powerful instructions and the instruction weighting factor can
also make a difference in comparison.

Other factors that affect performance are the data path width and the

floating point hardware. At the least, the data path should be]6 bits

wide. A 32-bit microprocessor would obviously be able to do more in the

same time and also provide more precision and dynamic range.

Having hardware floating point arithmetic capability also enhances the

overall processor performance. The next best thing is a floating point

coprocessor. Software floating point packages in lieu of the hardware may

be acceptable from a performance viewpoint. But they add complexity to

software development process since such a package would most likely be

developed and then integrated with a commercial HOL compiler.

The performance criterion for microprocessor selection should take all of

these factors in account.

3.1.4.2.4 IC and I/0 Networks The circuit switched nodes of the IC and

the I/0 networks are identical. For the proof-of-concept system each node

will have five identical ports. The node will interface with other nodes,

GPCs, and I/0 subscribers (displays etc.) through these ports. All ports
will be identical in terms of their ability to interface with any of the
aforementioned entities.

The Intercomputer communication network for the proof-of-concept config-

uration consists of three identical layers of a circuit switched network.

Each layer consists of five nodes. Each node services one GPC. Although

it is possible to service several GPCs from one node provided the node has

enough ports to do this, this is not the case for the POC configuration.

The three layers of the IC network are totally independent and are not

cross-strapped to each other. The initial no-fault configuration of the

three layers is identical although it does not have to be so. That is,

after a link failure in one layer the virtual bus configuration of that

layer would change as the network is reconfigured around the failed link.

The other two layers do not have to be reconfigured to make their virtual

bus path identical to the third one. The fault detection, isolation, and

reconfiguration of the IC network are the responsibility of the Global

Computer. Nodes keep track of any transmission errors which are protocol

related and inform the Global of these errors when queried by the Global.

This error data is analyzed by the Global to determine source of transient

34

faults on the network. The nodes also respond to status queries with the

status of the node and the ports. Other than this, the nodes are totally

passive circuit switching devices. They listen for node reconfiguration

commands from a|] ports whether or not that port is active. Valid recon-

figuration commands must be preceded by a Gateman code. Reconfiguration

commands are addressed to individual nodes a]though they are heard by all

nodes.

The principles of operation of the I/0 network are same as that of the IC

nBtwork. The I/0 network configuration for the POC system consists of a

single layer of 16 nodes. This network can be configured either as a sin-

gle global I/0 network or as several regional I/0 networks. Both config-

urations will be used in the POC to demonstrate the global and regional

I/0 bus features of the AIPS system. System displays and controls would

be attached to the I/0 nodes.

3.1.4.2.5 Mass Memory The AIPS proof-of-concept mass memory require-

ments can be satisfied by Winchester disks, magnetic bubble memory, or

Electrically Erasable ROM (EEROM) semiconductor memory. The choice will

be made during preliminary design. The mass memory redundancy scheme will

depend on this choice. If-the decision is to use the disk or the magnetic

bubble memory the memory will be replicated. Each copy will interface to

the triplex mass memory bus through its own bus interface circuitry. The

interface will be responsible for receiving redundant commands, address,

and data from GPCs and performing deskewing, voting, and fault detection

on the incoming data. Yoted data will be stored in the memory. Each

interface would also respond to the memory read requests on one of the

three mass memory buses. If the memory is implemented as EEROM, the fault

tolerance will be provided through encoding rather than triplication. A

candidate encoding scheme is described in Section G.2.

The mass memory interfaces will restrict access to mass memory by simplex

GPCs to read-only operations. A 'Mass Memory bus hog' capabi]ity wi]]

also be provided in support of semaphores or locks associated with shared

data in the mass memory. A GPC wi]] be able to retain control of the MM

bus, after gaining access to it, for multiple memory transactions. One

can read a memory]ocation, modify it, and write it back as a single atom-

ic operation.

3.1.5 AIPS POC System Operating Environment.

3.1.5.1 Overview. The AIPS architecture, defined in this specification,

provides the flexible and adaptive mechanisms needed for implementing

system configurations for the diverse range of NASA applications. The

AIPS multiapplication requirement necessitates that the architecture

embody a broad range of concepts and implementation flexibility. Config-

urations for the multiple applications may be quite different from one

another, using various of the system building blocks and concepts, and

even within an application there may be valid considerations for more than

one configuration.

The Proof-of-Concept (POC) system includes those AIPS concepts and system

components which require or which are required for concept proof by formal

test. The P0C system serves three fundamental purposes.

35

(1) The development and "proof" of AIPS architectural concepts. The

concepts include, for example, function migration, graded redun-

dancy, and fault tolerant intercomputer communication.

(2) The development of system components necessary to implement the

architectural concepts. This includes hardware, software, and

control algorithms.

(3) Provides a facility, when combined with the operating environment,

for the development and test of complimentary concepts, such as
fault tolerant software.

The Proof-of-Concept system in its operating environment must be able to

demonstrate the various AIPS architectural concepts sufficient for con-

cept evaluation. The AIPS system operating environment is provided by the
AIPS Integration and Evaluation Facility.

The System Integration and Evaluation goal is to verify that functional
requirements have been met and to provide a broad characterization of the

AIPS Proof-of-Concept system. The integration activity will be directed

toward the requirements and the evaluation activity, while being guided by
the requirements, will be exploratory in nature. System evaluation meas-

urements will stress as many of the performance parameters as are meaning-
fu] in the context of the Proof-of-Concept system. The following specific

types of evaluation tests will be performed:

(1) Performance

(2) Failure Modes and Effeccs

An integrated approach will be taken in performing the above tests types.
Fault tests, for exampl e ,wil] be performed with the system stressed to

determine system behavior during fault handling and reconfiguration. The

following system services will be tested with varying processing and com-
munication loads on the processors, IC network, and the I/0 network(s).

The list is not exhaustive and represents the minimum scope of the evalu-
ation tests. The test details will be developed and documented in the

AIPS test plan.

(1) Interfunction Communication (Inter/lntra Processor)

System Behavior with Loaded Intercomputer Network

Message Transport Delays
Communication Overheads

(2) System Time Management

(3) Function Migration

• Reconfiguration Time

• Effect on Nonmigrating Functions

(4) System Fault Tolerance

36

Q

Simulate Random and Correlated Faults

Verify/Update FMEA Models

Detection, Isolation and Reconfiguration

(5) Global and Regional Sensor, Effector and Function Communication

• Transport Lag

• Communication Overheads

(6) Operating System Overheads

• Computer Redundancy Management

• Sensor/Effector I/0

• Interchannel Communication (for source congruency)

• Operating System Context Switch

3.1.5.2 Operating Environment. Figure 8 on page 38 shows a schematic of

the POC system and its laboratory environment. The figure shows the five

POC processing sites and a typical configuration of the intercomputer net-

work (IC) and its nodes. Also indicated are direct connections between the

host computer and each of the processors, the global I/0 bus, and examples

of regional and dedicated I/0 busses. The mass memory and the memory buss-

es are shown, and the power distribution system is shown without its con-

nections. Not shown in the figure are fault injectors, which can be

attached to any of the POC elements in which faults are to be created.

In integration, evaluation, and applications testing, the host computer

is the primary test _river. The test operator will communicate with the
host through an interactive control and display terminal, and the host

wi]l be equipped with appropriate printers, plotters, and mass storage

devices, as well as suitable display software.

The host computer will be able to obtain and download POC software into

the POC system. It will also be capable of the following functions:

• start and stop system, processors and channels within processors

• examine/modify processor memory, registers, or I/0 ports

• examine/modify POC mass memory

• monitor IC network, including nodes

• monitor I/0 bus traffic

• symbolic debugging

These functions will require appropriate software in the host, as well as

corresponding hardware and software in the POC.

Also included in the facility is a subsystem workstation. In some tests,

the subsystem workstation (or more than one) may be connected to the POC

to provide very detailed monitoring of a specific processor, complement-

ing the capabilities of the host/interface system. The subsystem work-

37

l HOST 1

MEMORY

POWER
DISTRIBUTION

i
WORK I

STATION I
I

Figure 8. Proof-of-Concept System Operating Environment

station is connected to the POC in place of a processor and emulates that

processor. While the emulation is transparent to the POC, it provides the

capability to monitor and control the emulated processor. Typical func-

tions supported by the subsystem workstation are:

• breakpoints

• start and stop processor

• tracing

• single stepping

• examine/modify processing site interna] status

• symbolic debugging

• logic analysis

• statistical analysis

In addition, the subsystem workstation can function on its own as a gener-

a] purpose computer, and is normally equipped with tools for software

development (compi]ers, assemblers, etc.). In the POC environment, howev-

er, the software development will take place on a larger timesharing com-

puter, which may also be used as the POC facility host, or at least will be

linked to the host for data transfer.

38

3.2 Characteristics.

3.2.1 Performance Goals. The performance goals of the AIPS Proof-of-

Concept System are derived from the AIPS requirements document, CSDL

Report AIPS-83-50, and performance analyses accomplished during phase l.

3.2.1.1 System Time. The global computer will broadcast time to the other

GPCs over the IC network. This broadcast message wit1 occur at l Hz. The

nongloba] computers will align their internal clocks to this broadcast

time. The related performance issues are:

(1) Time value granularity. The 'least significant bit' or granulari-

ty of the time Value will be 1OO microseconds or less.

(2) The total time skew between any two GPCs due to all sources will be

no more than I millisecond.

(3) _hese performance estimates relate to error free conditions.

3.2.1.2 Function Migration. The performance goal is to minimize the time
that a critical function is suspended due to migration. This minimum time

applies to the condition where the function need be suspended only long

enough to assure that the data transferred to the new site is consistent.
It includes the time required to transfer the data via the IC bus and the

time required for the new site to restart the function. The goal for the
total time of function suspension is 50 milliseconds or less.

3.2.1.3 Fault Detection and Reconfiguration Time. For the FTMP the FDIR
performance goals are:

Detection - IOO milliseconds

Identification - 50 milliseconds

Reconfiguration - 50 milliseconds

For the FTP similar times are applicable for detection and identification.
Reconfiguration takes place only in the transition from duplex to simplex;
this performance goal is 50 mil]iseconds.

3.2.1.4 Computer Redundancy Management Overhead. For the FTP and FTMP the

FDIR overhead should be no more than 5¢ of processor throughput.

3.2.1.5 Interfunction Communication. The performance goals for inter-

function communication are dependant on whether or not the communicating

functions are in the same or different GPCs.

The goal is .5 milliseconds or less to send data from one function to
another in the same GPC.

The goal is 2.5 milliseconds or less to send data from one function to
another in a different GPC.

3.2.1.6 Sensor/Effector I/O. The performance goal for the cost of initi-

ating and completing an I/0 transaction on any of the I/0 buses is .3 mil-

liseconds. This is the fixed cost per transaction and does not include

39

any bus transit time.

3.2.1.7 Interchannel Communication Time to Support Source Congruency.
The goal for both the uniprocessor and the multiprocessor is 10 microsec-

onds or less per 16 bit word.

3.2.1.8 Operating System Context Switch Time. The goal for both the uni-

processor and the multiprocessor is 150 microseconds or less.

3.2.1.9 Time for Intercomputer Messages. The goal, assuming no queueing
delay, is 1.6 milliseconds or less per message. This includes the time
for both the sender and receiver.

3.2.1.10 Total System Software Overhead. The goal is to provide at least

75_ of the CPU throughput to application software. System Software should
consume no more than 25_.

3.2_2 Physical Characteristics. The proof-of-concept system will be

constructed with separate enclosures for each processing site. Basic

packaging will be duai-inline components on wire wrap cards mounted in

cages and cabinets. Site power conditioning and required cooling will be
provided within the enclosure.

The packaging will be adequate for the laboratory environment and for

shipment in appropriate containers,

3.2.3.Design Objectives The design obj@ctives described in the follow-

ing paragraphs shall be addressed as part of the systemdesign and imple-

mentation. The design.objectives are highly correlated and cannot be
incorporated into a system implementation without consideration of the

interactions. The architectural flexibility will allow the optimum bal-
ance of design objectives which will be a function of the relative impor-

tance of the various design objectives to the application program,

3.2.3.1 Physical Dispersion The AIPS elements shall be capable of phys-

ical dispersion for reasons of environmental protection, damage pro-
tection, or proximity to sensors and effectors. Physical dispersion

should include the dispersion of redundant elements of a redundant set in

order to provide damage tolerance.

3.2.3.2 Function Distribution The AIPS POC system shall support the dis-

tribution of application functions among the processing elements. Func-
tion distribution shall be allowed to change, via function migration, in

response to system requirements for resource/function reallocation or in
response to component failures. The allowed a11ocatlon of function to
processor resource shall include the static no reallocation case.

3.2.3.3 Maintainability. Maintainability will be achieved by a number
of different architectural and implementation attributes;

(1) Testability and fault isolation

• Modularity - hardware and software
• Embedded test features - hardware and software

• Error/Failure Logging

4O

(2) Commonality

(3) Accessibility

3.2.3.4 Reliability. The AIPS architecture shall provide for the

achievement of reliability levels commensurate with a range of applica-

tions and their respective maintenance strategies (e.g. AIPS configura-

tions with functions requiring failure probabilities per mission range

from I0-9 for a lO hour mission with no repair to a I0-2 for a 20 year mis-

sion with repair).

The AIPS system reliability for a particular application may be tailored

to match the specific application functions to be implemented. The AIPS

architectural concepts and system components allow this to be performed

through choices which consider other system attributes such as afforda-

biIity. Reliability will be achieved through architectural and implemen-
tation attributes such as;

(1) Graded redundancy - tailored to application requirements.

(2) Function Migration - provides graceful degradation.

(3) Implementing technology

(G) Fault and damage tolerance

(5) Maintainability

3.2.3.5 Availability The AIPS architecture shall provide for the

achievement of high levels of operational availability for those applica-

tions such as commercial and military aircraft that require a high rate of

mission executions. The AIPS shall use attributes such as;

(l) Fault and damage tolerance

(2) Maintainability

(3) Testability

(4) Function migration

(5) Graded redundancy

to allow timely repair after a mission, to allow initiation of a mission

with failed components, and to allow delay of maintenance until a more

convenient time or place.

3.2.3.6 Adaptability. The AIPS architecture shall minimize sensitivity

to changes in functional requirements, performance goals, and levels of

desired reliability and/or fault tolerance. It shall be possible to phys-

ically or functionally add to an implementation of the AIPS architecture

while minimizing the effect on existent functions with which the added

function has no communication.

Adaptability will be achieved by architectural and implementation attri-

butes such as;

(1) Modularity

(2) System Expandability
(3) Component Commonality

(4) Reconfigurability

41

3.2.4 Testability

3.2.4.1 Testability Concept. The testability concept for the AIPS
architecture embodies three distinct test environments although each test

feature, listed in the following sections, may provide support for more
than one. The three test environments are.

(1) Operational support for fault detection, isolation, and recovery.
(2) 0perational support for system maintenance

(3) Development Support

This section applies to major system test features that are primarily

required for development test and does not address the full range of fault

detection required for operational fault detection and isolation.

3.2.4.2 System Test Features. The AIPS system shall incorporate features

to enhance testability.

3.2.4.2.1 Test Features.

3.2.4.2.1.1 System Fault Logging. The software shall record the occur-
rence of all detected hardware and software faults. The record shall con-

tain the following information about each fault.

(1) Detection time (real-time clock)
(2) Fault source and identification time (if identified)

(3) Reconfiguration time

If fault source not identified - then provide list of suspects. The glo-

bal computer shall maintain the system faults log.

3.2.4.2.1.2 Resource Utilization. The local operating systems shall

monitor and record the usage duty cycle of their respective hardware
resources. The primary purpose for this requirement is the analysls of

system performance and the identification of throughput bottlenecks.

3.2._.2.1.3 System Configuration Trace. The global computer operating

system will be capable of recording a chronological history of system con-

figuration. Reconfiguration will occur for a limited set of reasons.
These reasons will be characterized and a code for each defined. For each

reconfiguration event the reason code and reconfiguration time will be

recorded with the reconfiguration data. This record will coptain, for
example, the following types of information.

(1) Intercomputer Network configuration history

(2) Input/Output Network configuration history

(3) Function Assignment history

3.2.4.2.1.4 System Halt The system processing components shall provide

the ability to "halt" the individual processing components individually

or collectively. This shall be possible without the loss of data current-

ly being transferred between processing sites. The "halt" shall be capa-

ble of being disabled.

42

The halt will be a result of internal address and/or data compares at a

processing site or by external command from test equipment.

internal address compare - The halt will occur based upon the fetch

of address and/or data at a processing site. The address/data may

be specified by an external device.
external command - An interrupt may be requested by external

devices. Two such types of external devices will be allowed; a

processor at a different processing site may cause a halt or an

external test device may cause a halt. This Feature will be used

to implement the system halt. The halt may be inhibited at the
local processor site and/or by external test equipment.

3.2.4.2.1.5 System Watchdog Timer. The system watchdog timer is imple-

mented within alternate global computers. It is referred to as the 'he-

artbeat monitor' whereby the alternate global assumes the roll of the

global if it does not receive a periodic poll message for a predetermined

number of poll cycle intervals.

3.2.4.2.2 Processor Site Test Features

3.2.4.2.2.1 Fault Logging The software shall record the occurrence of all
detected hardware and software faults. The record shall contain the fol-

lowing information about each fault.

(I) Detection time (real-time clock)

(2) Fault source and identification time (if identified)

(3) Reconfiguration time

If fault source not identified - then provide list of suspects. The locai

computer shal] maintain the local fault log.

3.2.4.2.2.2 Operating System Entry Trace. Each operating system will be

capable of recording a chronological history of invoked entry points. The

history trace will identify the operating system entry point, the time of
the entry, and an identification of the invoking process. Certain soft-

ware and hardware errors will cause the recording of the trace to stop. In

addition, the operator will be able to start and stop the trace. Each
GPCs' history trace will be separately controlled.

3.2.4.2.2.3 Watchdog Timer. There are two distinct implementations of

the watchdog timer at the processing sites.

synchropous - The synchronous watchdog timer will be implemented

through the use of a program interval timer. The interval timer is

set to the maximum allowable time for a process to complete. At
the end of the process the timer is reset for the next process to

be scheduled. If the process does not complete within the set

interval an interrupt occurs notifying the operating system. The
synchronous watchdog timer is intended to detect software process

errant behavior manifested by longer than expected operating time.

asynchronous - The asynchronous watchdog timer provides additlona]

fault coverage. For example, failures in the hardware or software
that would disable software implemented fault detection may be

43

o

detected by an asynchronous watchdog timer. The device will report

a channel to its partner channels and disable its own output circu-

itry. The asynchronous watchdog timer must be serviced by the sys-

tem software periodically in order to prevent the failure indi-

cation. The asynchronous watchdog timer will not use the process-

ing site oscillators or fault tolerant clock for operation and in

the unpowered state will indicate "fail"

3.2.4.2.2.4 Processor Halt Each processor at each processing site wil]

have the capability to be "halted" based upon internal and external

events. The "halt" will be implemented through the use of a program

interrupt which when not masked will cause the execution of a test rou-

tine. The test routine will allow an external device to request internal

data and to provide data for use by the test routine or other software

resident at the processing site.

internal address compare - The halt will occur based upon the fetch

of address or data from a specified address. The address may be

specified by an external device.

externa] command - An interrupt may be requested by external

devices. Two such types of external devices will be allowed; a

processor at a different processing site may cause a halt or an

external test device may cause a halt. This feature wi]] be used

to implement the system ha]t. The halt may be inhibited at the

local processor-slte and/or by external test equipment.

Access to processor internal state will be via the "halt" actuated soft-

ware routine or other software routines accessible to external test and

monitor equipment.

3.2.4.2.2.5 Simulated Fault Capability. In order to verify that the fault

tolerance features of the system are functioning properly, it wil] be nec-

essary to simulate the incorrect behavior of certain system components.

To that end, it will be possible to add software that simulates the incor-

rect behavior of a system element or its components. In particular, it

will be possible to simu]ate a fault in any single element of a redundant

complement, for example, a single member of an FTMP processor triad.

3o2.4.3 Testability Matrix. The test matrix depicted in Figure 9 on page

4S shows the correlation between the system and processing site test fea-

tures and the matching test types.

3.2.5 Environmental Conditions.

follows.
The operating environment shal] be as

3.2.5.1 Ambient Temperature. The upper and lower temperature operating

limits for the deliverable POC systems will be 60 degrees Fahrenheit and

90 degrees Fahrenheit respectively.

3.2.5.2 Humidity. The upper and lower relative humidity operating lim-

its for the deliverable POC systems will be 30_ and 95_ respectively.

44

(1)

FDIR

(2)
MAINTENANCE

(3)
DEVELOPMENT

SYSTEM TEST FEATURES

System Fault Logging X

Resource Utilization

System Configuration Trace

System Halt

System Watchdog Timer X

PROCESSOR SITE TEST FEATURES

Fault Logging

Operating System Entry Trace

Watchdog Timer X

Processor Halt X

Simulated Fault Capability X

Figure 9. Testability Matrix

3.2.5.3 Electrical Power.
TBS.

The electrical power requirements will be

3.2.5.4 General. The POC system is intended to be operated in the pro-
tective environment of a development laboratory. It is not intended to be
used in an environment where shock, vibration, temperature extremes, etc.

are to be encountered.

3.3 Design and Construction

3.3.1 Parts, Materials, and Processes The POC system elements shall be

designed using commercially available integrated circuits, microproces-

sors and other piece parts. Programmable logic arrays may be used where

appropriate. It is not required that custom integrated circuits be used or

that custom components be developed for the proof-of-concept system.

Component selection will consider the availability of Mil-qualified or

qualifiable versions of the parts to be used. Designs will consider the

parameters of full range parts, although the proof-of-concept system wit1

use commercial and industrial grade devices.

_5

3.3.2 Electromagnetic Radiation The EMI emissions and susceptibillty

will conform to that nominally associated with development laboratory

grade systems.

3.3.3 Workmanship The proof-of-concept system must operate satisfac-

torily in the test laboratory environment and endure changes, mainte-

nance, reconfiguration, and fault injection (e.g. repeated component
removals and installations). Workmanship standards suitable for these

laboratory conditions will be implemented.

The proof-of-concept system design will use proven packaging techniques.
The first build of a component will be hand wired; subsequent builds,

including the deliverable systems, will be built by automatic wiring
machine.

3.3.4 Computer Programming Standards The proof-of-concept software wi-ll
be produced using programming standards in conformance with the CSDL

'Software Development Policies and Guidelines' It is intended to use the

Ada Programming Language and an implementation of its associated Ada Pro-
gramming Support Environment, including program design languages and con-

figuration management tools to develop, manage and control the software.

3.4 Documentation This specification states the overall system

description and technical requirements for the development of AIPS

Proof-of-Concept (POC) systems. From these requirements, detailed techni-

cal requirements shall be derived for AIPS. Those requirements will form

the basis for the detailed design of an AIPS POC system described in up to

four sets of design specifications (AIPS hardware, AIPS software, test

.support elements, development support elements) as shown in the Figure]O

on page 47.

One set of design specifications will cover the detailed requirements and

description of the major hardware elements of AIPS. The specifications
will include sufficient information, along with referenced documentation,

to completely describe each hardware element and its interfaces. This

includes principles of operation, schematics, fabrication drawings, parts

lists, and reference publications.

A second set of design specifications will cover the major software ele-
ments of the AIPS POC system, including the AIPS Evaluation and System

Software, and Demonstration Applications Software. Detailed requirements

for this software will be stated in separate requirements specifications.

The designs which satisfy the detailed requirements will be described in
the software design specifications. The design specifications will

include characterizations of overall program flow and architecture, and
detailed descriptions of the inputs, outputs, and logic of each of the

computer programs. The software specifications will, in genera1, support
the software development concepts presented in document CSDL-C-5526,

"Software Development Policies and Guidelines".

The remaining sets of design specifications will cover the special, facil-
ities related hardware and software features needed for AIPS Test Support

and AtPS Development Support. Individual specifications of this type will
include both the detailed requirements and design descriptions necessary

46

AIP$ PROGRAMPLAN, PHASE II

f

AIPS PROGRAM

OEVELOPMENT PLANS

(SOFTWARE)

(HARDWARE} J

1
I AIPS SYSTEM]

SPECIFICAT ION

l
t .,Ps_._,AR. 1

I .EO_I.E,._._PECSI,.YSTEMS.EVA'°ATIONS')I
,.PPL,_A.,ONS,.,)I

1
DESIGN SPECS OESIGN SPECS

ISYSTEMS & EVALUATION S/W)

I-1 I"_ NETWORXNOOES_UNXStI tAPPUCAnONS_) |
rl I"'°NE_oRKNOOES.L,NKS)I
f I_.ASS.E_RYCONT.OLL.,1

AIPS PROJECT

PLANS

(QAI

(CONFIG MGMTI I

f
A,. TESTPLAN I

,OEV_O_"ENTTE.S,I
(INTEGRATION TESTS) l

VALUATION TESTS) II

O APPLICATION, I I

PTANCE TESTS) J |

TEST SUPPORT EVELOPMENT SUPPORT

ITEST H/W ANO S/_N) | IH..",N ANO S_NI j

I L 'ENV'"ONMENTALSIMi]

A,,SO"A)LEO ITEST PROCEDURES

t

AIPS ANALYSTS I

REPORTS

(,NTEGRA.IONTESTS)
(OE.OAPPL,CATION,J

(EVALUATION)]

Figure 10. AIPS Documentation Tree

for the support of development and testing of the AIPS P0C system at CSDL.
The intent is to inc]ude modifications required by AIPS to software and

hardware tools a]ready available commercial]y or at CSDL, incorporating
as much as possible by referencing existing documentation on these tools.

The methods in which testing of AIPS will be accomplished shall be

described in an AIPS test plan. The plan will cover testing of both the
hardware and software features to assure that the AIPS POC system meets

the detailed and overall AIPS system requ;rements. The plan will also

inc]ude eva]uation and demonstration app]ication tests which exp]ore the
achieved performance of AIPS.

The plans for the final integration and evaluat;on tests will be accompa-
nied by test procedures sufficient]y detailed to provide the capability to

rerun tests with repeatable results. It is intended that these procedures

wi]] be suitab]e for acceptance tests of AIPS systems fabricated subse-

quent to the CSDL POC system.

_7

The results of tests specified by the AIPS test plan, as well as conclu-

sions from various AIPS studies will be summarized in a set of AIPS Analy-

sis Reports as shown in the Documentation Tree.

3.5 Functional Area Characteristics

3.5.1 System Hardware. This section of the System Specification pro-

vides the system hardware requirements. It is intended that the subse-

quent sections specifying the individual hardware subsystem

characteristics will provide the roots for subsequent design specifica-
tions.

3.5.1.1 Fault Tolerant Processor (FTP) The fault tolerant processor

consists of processing elements interconnected via data exchange devices.

An FTP can exist as a triple or dual processing element. Simplex process-
ing elements will be an adaptation of an FTP channel. The basic config-

uration of a triplex FTP is shown in Figure 1] on page 49.

Each channel of an FTP is identical except the local I/0 in each may be
different. All execute identical software in synchronism, Each process-

ing element of an FTP will contain a portion of the fault tolerant clock,
a computational processor (CP), an input output processor (lOP) which con-

tains interfaces to the intercomputer (IC) network, input output (I/0)

network, and functions common to both the CP and IOP. All computational

processors and input output processors of a fault tolerant processor are

interconnected through data exchange registers.

In the proof of concept system each input/output processor of the FTP is

connected to a seperate root node. Only one input/output processor of an

FTP is active during an I/0 transaction. Messages transmitted and

received on the I/O network are handled in the same manner as processor

unique I/0, that is each processor will output as if its transmitter were

enabled whether is is or not. For an input the I/0 processors will

respond to an interrupt or flag and all will perform the input function,

although only one will actually receive the data, and use the data

exchange mechanism to share the data.

3.5.1.1,1 Computational Processor Each computational processor shall be

comprised of the elements shown in Figure 12 on page 50.

3.5.1.1.1.1 Central Processor Unit The central processor unit (CPU) is

the processing element for the computational processor. All data process-

ing and manipulation is performed by the CPU. It will operate with a

clock speed appropriate for the chosen processor and the processor shall

function with virtual memory through a memory management unit. Memory

accesses that are not resident within the local storage area will cause

page faults. The processor shall be capable of suspending processing,

reloading memory with the required data and restarting program execution

without loss of continuity. Upon power up, a11CPUs will be reset. This

reset shall clear all working registers and flags. As part of the

initialization the CPU shall reset all interfaces to a predetermined
state.

3.5.1.I.l.2 Memory The memory module contains the local storage for the

computational processor. It contains all program storage, constants and

48

COMPUTATIONAL
PROCESSOR

COMPUTATIONAL

PROCESSOR

COMPUTATIONAL
PROCESSOR

I I
EXCHANGE I

SHARED
FUNCTIONS

II

[IXCHANGJSHARED

FUNCTIONS

,I
EXCHANGE J

SHARED
FUNCTIONS

I INPUT/OUTPUT I

PROCESSOR I

I/ol ,c I
INTF I Ir,TF I

J
I I

I

I INPUT/OUTPUT l

PROCESSOR J

,/E I 'el
_T_I ,NTFI

11rr
I INPUT/OUTPUT I

PROCESSOR I

,/o I IC I
INTF I INTF I

" llJI I
I I
I t
i I

I/0 -

OCE_,

Figure 11. Fault Tolerant Processor Functional Diagram

variables necessary to perform the assigned tasks. Each memory shall be

comprised of random access memory (RAM) and read only memory (ROM). The
total of RAM and ROM is 256k bytes. The ratio of the two memory types will

be determined during the preliminary design process.

(I) RAM

The RAM may be used for the storage of variables and data as well

as functions migrated to this element. The RAM shall have an

access time such that no more than two processor wait cycles are

required for access.

(2) ROM

The R0M will contain the fixed operational programs, subroutines,

constants, initialization and diagnostic programs. The R0M shall

have an access time such that no more than two processor wait
cycles are required for access.

49

CPU RAM ROM
REAL
TIME

CLOCK

CPU BUS

INTERVAL WATCHDOG
TIMER TIMER

SHARED
BUS PORT

BUILT-IN
TEST

Figure 12. Computational Processor Functional Diagram

3.5.1.1.1.3 Timers The timers are used for keeping track of real time,
timing tasks, and maintaining a check on the health of the hardware and

software. Each timer module shall contain a real time clock, interval
timer(s), and a watchdog timer.

(l) Real Time Clock

The real time clock shall be a 32 bit hardware register which can

be preset to the system time under program control. Once set the
real time clock shall increment every 50 to 100 microseconds,

depending upon available timing. When the count reaches the maxi-

mum value it shall reset to zero at the next count cycle and con-
tinue to count up.

(2) Program Interval Timer(s)

The interval timer(s) shall be a 16 bit hardware register that can

be preset to any value by the software. Once set the interval tim-

er shall decrement to zero and continue. When the timer reaches

zero an interrupt is requested. The interval timer(s) shall be

capable of being read or written. The interval timer(s) shall have

a resolution between 8 and 24 microseconds based upon available

timing.

(3) Asynchronous Watchdog Timer

The asynchronous watchdog timer is a fault detection mechanism

which provides an overall check on the health of the processing

element. Under normal operating conditions the software must

reset it periodically. This verifies that the system is func-

tional. If not reset or a hardware failure prohibits service, the

50

asynchronouswatchdog timer shall reset the CPU. It shall be pos-
sible to inhibit the asynchronous watchdog timer when operating in

the test mode. The asynchronous watchdog timer shall be independ-

ent of the processor oscillator.

3.5.1.1.1,4 Shared Bus Port Each processing element shall have a shared

bus port. This port allows the processor to gain access to the devices
that the CP and the lOP share. The items that they share are described in

section 3.5.1.1.3. The shared bus port shall contain the contention logic

and the bus drivers and receivers necessary to use the shared bus. A

functional block diagram of a bus port is shown in Figure 13 on page 52.

The processor requests use of the bus from the bus arbiter and if avail-
able it is free to perform a transfer on the bus, at the same time the oth-

er processor is prevented from using the bus. If the bus is in use the

request will remain pending.

3.5.1.1.1.5 Built-in Test Features The system component shall have

built-in test features to provide visibility into the system operation.

The following features shall be included.

(1) Dual Port Memory

A dual port memory shall provide a communication path between the

Proof-of-Concept system and the Integration and Evaluation Facili-
ty host computer. The facility host computer shall be capable of

sequentia]]y reading the data stored in all dual port memories in

all elements of the system. Additionally, it shall be possible for

the facility host computer to down}oad programs and commands to the
processing elements .without use of the communication necworks.

-This dual port memory will appear to the processing elements and
the facility host computer as 2048 words of RAM memory.

(2) Bus Monitor

Each processing element shall have a nonintrusive bus monitoring
capability. This monitoring capability should be capable of

detecting specified events within the processor. This capability

shall reside on an independent circuit board such that the feature
may be installed or deleted as required. Detectable events shall
be:

(a) Condition Compare

Each monitor shall have an address and data compare register
which can be read or written by either the processor or through

the external test device, such as the the facility host comput-

er. The address compare register will be used to continually
monitor the address bus. Whenever an address match occurs,

several results shall be possible.

(i) A flag will be set indicating a match; This flag will be

accessible by the facility host computer through the dual

port memory.

5l

lOP CP

I I
BUS

ARBITRATION
LOGIC

EXCHANGE
MECHANISM

SHARED MEMORY
MEMORY BUS

INTERFACE

I I SHARED BUS

f I
A l l o 1TOLERANT CONDITIONING

CLOCK

POLL

Figure 13. Shared Bus Port Functional Block Diagram

(ii) An interrupt will be provided and if enabled a "halt" of

the processing element will occur.

(iii) A global halt signal shal] be transmitted to other proc-

essing elements. (The results at other sites will depend

upon the enable or disable of the signal.)

Each of these conditions shall be selectively enabled or disa-

bled. In addition, response to an external halt signal, from

another processing element, shall be selectively enabled or
disabled. The address compare shall function on the address

field of the processor and shall be capable of indicating a
match within two fault tolerant clock cycles of its occur-

rence.

(b) Selected Exceptions

Each monitor shall be capable of displaying the occurrence of
exceptions. A method of signalling an external test device

whenever an exception occurs shall be provided. The

exceptions implemented shall be documented in the hardware
design specification.

(c) External Commands

Each processing element shall have the capability of accepting
commands from external test devices. Commands that shall be

implemented are: halt on condition; read memory; halt from
external condition; start program execution.

52

(d) The test software shall have the capability to start or stop

the real time clock, the interval timer(s), and the asynchro-

nous watchdog timer.

3.5.1.1.2 Input Output ProcessoF Each Input Output processor shall be

comprised of the elements as shown in Figure 14 on page 53. The basic

CPU, memory, timers, shared memory and dual port memory are identical to

those in the computational processor. The 10P however contains some addi-

tional elements which are also defined.

3.5.1.I.2.1 Central Processor Unit The central processor unit (CPU) is

the processing element for the computational processing element. All data

processing and manipulation is performed by the CPU. It will operate with

a clock speed appropriate for the chosen processor and the processor shall

function with virtual memory through a memory management unit. Memory

accesses that are not resident within the local storage area will cause

page faults. The processor shall be capable of suspending processing,

reloading memory with the required data and restarting program execution

without loss of continuity. Upon power up, all CPUs will be reset. This

reset shall clear all working registers and flags. As part of the

initialization the CPU shall reset all interfaces to a predetermined

state.

3.5.1.1.2.2 Memory The memory module contains the local storage for the

computational processor, it contains all program storage, constants and

variables necessary to perform the assigned tasks. Each memory shall be

comprised of random access memory (RAM) and read only memory (ROM). The

total of RAM and ROM is 128k bytes. The ratio of the two memory types will

be determined during the preliminary design process.

(I) RAM

The RAM may be used for the storage of variables and data as well

as functions migrated to this element. The RAM shall have an

access time such that no more than two processor wait cycles are

required for access.

(2) ROM

The ROM will contain the fixed operational programs, subroutines,

constants, initialization and diagnostic programs. The ROM shall

have an access time such that no more than two processor wait

cycles are required for access.

3.5.1.1.2.3 Timers The timers are used for keeping track of real time,

timing tasks, and maintaining a check on the health of the hardware and

software. Each timer module shall contain a real time clock, interval

timer(s), and a watchdog timer.

(I) Real Time Clock

The real time clock shall be a 32 bit hardware register which can

be preset to the system time under program control. Once set the

real time clock shall increment every 50 to lO0 microseconds,

53

BUILT.IN

TEST
CPU RAM ROM

REAL

TIME

CLOCK INTERVAL J
TIMER

CPU BUS

WATCHDOG

TIMER
SHARED

BUS PORT i [
J 1 t

LOCAL
I/O

Figure 14. Input Output Processor Functional Diagram

depending upon available timing. When the count reaches the maxi-

mum value it shall reset to zero at the next count cyc]e and con-

tinue to count up.

(2) Program Interval Timer(s)

The interval timer(s) shall be a 16 bit hardware register that can
be preset to any value by the software. Once set the interva] tim-
er shall decrement to zero and continue. When the timer reaches

zero an interrupt is requested. The interval timer(s) shall be

capable of being read or written. The interval timer(s) shall have
a resolution between 8 and 24 microseconds based upon avaiiab]e

timing.

(3) Asynchronous Watchdog Timer

The asynchronous watchdog timer is a fault detection mechanism

which provides an overall check on the health of the processing

element. Under normal operating conditions the software must

reset it periodically. This verifies that the system is func-

tional. If not reset or a hardware failure prohibits service, the

watchdog timer shall reset the CPU. It shall be possible to inhib-

it the asynchronous watchdog timer when operating in the test mode.

The asynchronous watchdog timer shall be independent of the pro-
cessor oscillator.

3.5.1.1.2._ Shared Bus Port Each processing element shall have a

shared bus port. This port allows the processor to gain access to the
devices that the CP and the 10P share. The items that they share are

described in section 3.5.1.1.3. The shared bus port shall contain the

54

contention logic and the bus drivers and receivers necessary to use the
shared bus. A functional block diagram of a bus port is shown in Fig-

ure 13 on page 52. The processor requests use of the bus from the bus

arbiter and if available it is free to perform a transfer on the bus, at
the same time the other processor is prevented from using the bus. If the

bus is in use the request will remain pending.

3.5.1.l.2.5 Intercomputer Network Interface. Each lOP shall contain an

interface to the intercomputer (IC) network. This is shown in Figure]l

on page 49 as the triplex interface to the IC Node. A detail diagram of
the major components of this interface is shown in Figure]5 on page 56

Each processing element listens to all three IC network layers, but trans-

mits on only one network layer. The following describes the function of
each interface element.

(]) Voter, Error Latch and Receiver

The receiver shall accept the serial data stream, verify compli-
ance with the network protocol, convert to internal logic levels

and timing, and check for transmission errors. If the data does

not comply with the protocol, the receiver shall reject the trans-
mission until a valid protocol synchronization is received. If a
transmission error is detected, the event shall be stored in an

error register. This error register shall store the errors until
the CPU software reads and clears it.

In the case of the triplex intercomputer network there is a receiv-

er for each of the three IC buses. The outputs ,from the three

receivers are applied to each of the FTP IOP voters (one per redun-

dant channel). The voter receives the triply redundant trans-

mission from the Intercomputer network and does a bit by bit

comparison of the transmission. If any of the bits disagree it

shall output the value of the two out of three majority of that bit

position. At the same time it shall set a flag in the error latch

indicating on which line it perceived an error. The error latch

flags are stored within the error register until acted upon by the

software. When read by the software the voter or receive error

registers shall be cleared.

In the case of a duplex intercomputer network (or triplex downmoded

to duplex) the FTP voter will only have two inputs to function

with. The output of the voter will always have an error in the

nonexistent channel position. This error may be masked by the
software. If either of the other channel positions indicates an

error, then it will be an indication that there was a disagreement

between the two data paths. With only two data copies the voter
can detect an error but not isolate it. Isolation of the fault

will depend upon the detection of errors at the receiver prior to
the voter.

To support receipt of simplex data (including triplex/duplex

downmoded to simplex) a bypass of the voter shall be allowed. In

the simplex configuration, any data source received by the voter

55

E1

E1 E2 E3

I ERROR IREGISTER

CPU BUS

POLL

I E2 I + E3 TVOTER

I CO VER E I" I OE OOE

I UFFERS I

l

IPARALLEL TO SERIALJ

Figure 15. IC Network Interface Functional Diagram

may be selected. The bypass shall be constructed so as to insure

that a failure causing the bypass mode is detectable.

(2) Data Conversion

The output of the voter is a serial bit stream that has had vote

discrepancies masked. This output is then applied to a serial to

parallel converter. The output of the serial to paralle1 converter

can be read by the CPU through the buffers.

(3) Address Decode

Each device that is connected to the intercomputer bus shall have a

broadcast address and a unique address for identification. A]]

functional devices shall receive all messages that appear on the

intercomputer network. It is the responsibility of the device to

determine which messages are intended for it. This is the function

of the address decoder. As each message is received, the address

decoder will look at the address portion of the message and if it

finds a match notify the CPU of a waiting message. The address

decoder shall respond to broadcast messages as well as specific
messages.

56

(4) Transmitter

Each channel of an FTP transmits on one intercomputer network lay-

er. A11 IOP CPUs in the FTP load their Intercomputer transmit

buffer with the data to be transmitted. The output of the buffers

are serialized and applied to the transmitter, which encodes the

message into the network protocol and if enabled transmits it.

The transmission duration shall be limited by the channel hardware

and there shall be a delay in reenabling to protect against babbl-

ing mode faults.

(5) Control

The interface shall contain a control module that enables and disa-

bles functiohing of the interface. It also provides the sequence

control for the protocol encoder and decoder and is under software
control of the CPU.

(6) Network Contention

Each transmission on the intercomputer network is preceded by con-

tention for the network by those processing elements requiring

access. The Laning poll technique shall be used for resolving con-

tention. At the end of the previous transmission the protocol

receiver and transmitter will be gated off and the contention logic

enabled. Any processing element that requires the network will

wait a prescribed time after normal transmission ends and start the

poll. Any unit not entering the poll within a. specified time of

the start will be locked out of this poll sequence. Whenever an

element observes the completion of the poll, even when it was not a

participant, it will switch over to the data mode. This will allow

all elements on the network to receive the data transmission, and

will be performed totally in hardware so as not to burden the soft-

ware. The polling is performed simultaneously on all three IC bus-

es. When the poll is complete the FTP will do an exchange to

verify that all elements have the same poll result.

3.5.1,1.2.6 Input/Output Network Interface The input/output network

interface provides access to the I/0 network. Each input/output processor

has a direct interface to a dedicated network root node. However, only

one input/output processor will be enabled to receive or transmit during

an I/0 transaction. When a message is received, a cross channel interrupt

or flag will be generated so that all processors will perform the read.

The data exchange mechanism will be used to perform source congruency.

When an FTP desires to transmit the polling will be handled by the hard-

ware in all lOP channels; however, the lOP attached to the root node

addressed will perform the polling and subsequent transmission. The input

resulting from the transmission, if any, will be received by the transmit-

ting lOP and passed to the other lOP channels via the exchange mechanism.

Since the I/0 is simplex it follows that voting cannot be used to mask

errors. Errors will be detected by the protocol checker in the enabled

receiver. The connection of an FTP to the input output network is shown

in Figure II on page 49. A block diagram of the input output network

57

interface is shown in Figure 16 on page 58 and the function of the major

elements follows.

(1) Receiver

The receiver shall accept the serial data stream, verify compli-

ance with the network protocol, convert to internal logic levels

and timing, and check for transmission errors. Transmission

errors will be available to the software via a register.

(2) Data Conversion

The output of the receiver is converted from a serial bit stream to

paralle] words in the serial to parallel converter. These parallel

words can now be read by the CPU through the buffers.

(3) Transmitter

Only one member of the FTP is enabled to transmit on the input out-

put bus. All 10P CPUs in the FTP load their I/0 transmit buffer

with the data to be transmitted. The output of the buffers are

serialized and applied to the transmitter, which encodes the mes-

sage into the network protocol and if enabled transmits it.

The transmission length shall be limited by the channel hardware

and there shall a delay in reenabling to protect against babbling
mode faults.

(4) Control

The interface shall contain a control module that enables and disa-

b]es functioning of the interface. The FTP software will determine

which lOP is to be enabled for transmitting. The control modu]e in
the selected 10P wil] enable its transmitter with the other two

disabled. It a]so provides the sequence control for the protocol
encoder and decoder and is under software control of the CPU.

(5) Network Contention

Each transmission on the input/output network is preceded by con-

tention for the network by those processing elements requiring
access. The Laning poll technique shall be used for resolving con-

tention. At the end of the previous transmission the protocol
receiver and transmitter will be gated off and the contention logic

enabled. Any processing element that requires the network will
wait a prescribed time after normal transmission ends and start the

poll. Any unit not entering the poll within a specified time of

the start will be locked out of this poll sequence. Whenever an

etement observes the comp]etion of the po11, even when it was not a
participant, it will switch over to the data mode. This will allow

all elements on the network to receive the data transmission, and

will be performed totally in hardware so as not to burden the soft-
ware.

58

f i/(

I
" ! POLL

1
RECEIVER . CONTROL

TRANSMITTER

EERIAL TO PARALLEL
CONVERTER H ADDRESS k PARALLEL TO SERIAL IDECODE CONVERTER

BUFFERS

CPU BUS

Figure 16. I/0 Network Interface Functional Block Diagram

3.5.1.1.2.7 Local Input/Output Devices Each lOP shall be capable of

accepting additional input/output mechanisms.

3.5.1.1.2.8 Built-in Test Features The system component shall have

built-in test features to provide visibility into the system operation.

The following features shall be included.

(I) Dual Port Memory

A dual port memory shall provide a communication path between the

Proof-of-Concept system and the Integration and Evaluation Facili-

ty host computer. The facility host computer shall be capable of

sequentially reading the data stored in all dual port memories in

all elements of the system. AdditionaIIy, it shall be possible for

the facillty host computer to download programs and commands to the

processing elements without use of the communication networks. ,

This dual port memory will appear to the processing elements and

the facility host computer as 2048 words of RAM memory.

(2) Bus Moni tot

Each processing element shall have a nonintrusive bus monitoring

capability. This monitoring capability should be capable of

detecting specified events within the processor. This capability

shall reside on an independent circuit board such that the feature

may be installed or deleted as required. Detectable events shall

be:

59

(a) Condition Compare

Each monitor shall have an address and data compare register

which can be read or written by either the processor or through
the external test device, such as the the facility host comput-

er. The address compare register will be used to continually
monitor the address bus. Whenever an address match occurs,

several results shall be possible.

(i) A flag will be set indicating a match; This flag will be

accessible by the facility host computer through the dual
port memory.

(ii) An interrupt will be provided and if enabled a "halt" of
the processing element will occur.

(iii) A global halt signal shall be transmitted to other proc-

essing elements. (The results at other sites will depend
upon the enable or disable of the signal.)

Each of these conditions shall be selectively enabled or disa-
bled. In addition, response to an external halt signal, from

another processing element, shall selectively enabled or disa-
bled. The address compare shall function on the address field

of the processor and shall be capable of indicating a match

within two fault tolerant clock cycles of its occurrence.

(b) Selected ExceptFons

Each monitor shall be capable of displaying the occurrence of

exceptions. A method of signalling an external test device
whenever an exception occurs shall be provided. The
exceptions implemented shall be documented in the hardware

design specification.

(c) External Commands

Each processing element shall have the capability of accepting
commands from external test devices. Commands that shall be

implemented are: halt on condition; read memory; halt from
external condition; start program execution.

(d) The test software shall have the capability to start or s'top

the real time clock, the interval timer(s), and the asynchro-

nous watchdog timer.

3.5.1.1.3 Common Functions Some elements of the FTP are shared by both

the CP and the lOP. These functions either do not have a high usage rate

or are used for CP/IOP intercommunication and therefore need not be dupli-
cated. Functions that fail into this category are the data exchange mech-

anism, shared RAM and shared subroutine memory. All devices of this type
reside on a internal shared bus. Both the lOP and CP contend for use of
this bus.

GO

3.5.1.1.3.1FTP Data Exchange Mechanism The data exchange is the means

by which data is passed between channels of the FTP. Functions performed

are voting and transfers from single channel to all channels. Data is
transferred in serial format to minimize the number of signal paths

between channels of the exchange. The requirements are:

Word (16 bit) rate: 1 word per 5.25 microseconds

Link Bit Rate: 4 MHz

Maximum Channel Separation (Cable Length): 5m

(I) Internal View

The data exchange appears as six registers. Four of these are

write only:

XA Channel A to all transmitters

XB Channel B to all transmitters

XC Channel C to all transmitters

XV Voter

and two may be read:

XR Receiver register

XE Error register.

Data transfers are accomplished by first writing to a transmitter

register and then reading the result from the receiver register.

For example, if all channels execute a move to XA, channel A's data

will appear in XR of all channels. If all channels execute a move

to XV, the "bit by bit" "2 out of 3" majority of the three chan-

nels' data appear in XR of all channels.

(2) Overview

Figure 17 on page 62 functionally depicts the data exchange
mechanisms and paths of all three channels (A,B,C) and the flow
from channels (left), through interstages (center) back to chan-

nels (right). Within a channel, left to right, are the transmitter

register, buffers to the interstage and bidirectional buffers to
and from the other channels, the interstage and interstage buff-

ers, crosschannel wiring, vote/selection circuitry, and the

receiver and error registers.

Six paths emanate from each channel: two crosschannel, two

interstage out, and two voter inputs, The interstages are collo-

61

I TRANSMIT J

_t CHANNEL Bbz

1-_"ANS""!

t CHANNEL C

l_ z1
__ INTER- I V l T I IN] ER-I V

STAGE i "_- _ --'1 ST,_ GE |_'--"

,.,,.:,AGEL___' _,.T,.STAOE' '

..... t

\VOTE,S_L_yV I \V'OT_'SELE_y'_

'REOE,V jj '! I.Ec ,vEI

INTERSTA

z

7 ._o,_S_L,Cy_
j t "_

q

Figure t7. Data Exchange Functiona] Diagram

cated with their associated channels, so the third interstage out-

put and input paths do not require cabling.

The interstages shall be equipped with independent power (V)

and fault tolerant clock reference (T). Resistor-like symbols

indicate electrical fault containment.

(3) Congruency

The interstages are provided to insure that two good channels

cannot receive differing data from a single source (i.e., the third

channel) in the presence of a single fault. If a channel has failed

in such a way that it produces ambiguous (incongruent) data, then,

62

by definition, no interstages have failed and all interstages must
produce unambiguous (even if incorrect or different) data. Con-

versely, if an interstage has failed so as to produce ambiguous

output, that interstage is the first failure and the three channels
and other two interstages are good. In either case, a two of three

vote of the interstage outputs produces consistent data in all good

receivers.

(4) Exchange

Transfer of data takes place in two phases. During the first

phase, data is transmitted to the interstages, and the interstages
latch and stabilize the data; during the second phase, the inter-

stage outputs are passed to the channels and each channel performs

a two of three vote on the incoming data, storing the result in the

receiver register.

(5) Sequencing

A transfer operation is initiated when a write to one of the

transmit registers takes place. If the exchange hardware is not

busy, it initiates a transaction; if the exchange is busy, the

operation is held up by forcing a processor to wait until the

exchange is no longer busy.

The following control sequence occurs following a write to the

transmit register.

(a) Interstage latches data

(b) Voted interstage latches data

(c) If a single byte operation

Then: Release exchange

Else' Repeat (1) and (2) for second byte

Reading of the receiver register while the exchange is busy will

cause the processor to wait until the operation completes.

(6) Error Indications

Oisagreements among channel inputs are registered in the error
latch XE, The bits indicate which channel is in error and also the

operation(s) taking place:

63

15 14 13 12 11 10 9 8 7 6 5 4:3 2 1 0

m n

X C G a xcbaix c b a x c b a

XV ' XC XB XA

An error is indicated by a zero in the corresponding bit. The indi-

cation remains until XE is read (all bits are set to one by the
clear operation), Bits marked X are indeterminate,

(7) Restoration

The receiver register may be written so that an interrupting

program may use the exchange and restore XR before returning con-
trol.

(8) Synchronization

The data exchange serves as the means for establishing and verl-

fying synchronism between the channels of the FTP. When the
exchange is selected as a source while it is busy, the processor
will be detained unt.il the operation completes; this aligns the

processor instruction stream with the fault tolerant clock. If,

-further, the received data agrees with its expected value, then the
source of the data must be program synchronism. Program synchroni-

zation may be established by conducting repeated data exchanges
until agreement is found in the received data.

3.5.1.1.3.2 Mass Memory Bus Interface The mass memory bus interface

shall provide the means for transmitting and receiving mass memory data.

Since the mass memory is on a triply redundant contention bus each of the

redundant 10Ps must contend for access to the mass memory bus.

Figure 18 on page 65 is a block diagram of the mass memory interface. The

following is an explanation of the major elements of the interface.

(l) Voter, Error Latch and Receiver

The receiver shall accept the serial data stream, verify compli-

ance with the network protocol, convert to internal logic levels

and timing, and check for transmission errors. If the data does

not comply with the protocol, the receiver shall reject the trans-

mission until a valid protocol synchronization is received. If a

transmission error is experienced, the event shall be stored in an

error register. This error register shall store the errors until

the CPU reads and clears it.

In the case of the triplex mass memory bus there is a receiver for

each of the three mass memory buses. The outputs from the three
receivers are applied to each of the voters (one per redundant

64

MASS MEMORY

BUS

!

RECEIVER RECEIVER RECEIVER I
I

E1 _ E2 F-- E3

E 1 E2 E3

ERROR
REGISTER

VOTER

JI

SERIALTOPARALLELL__J
CONVERTE" i

!
ADDRESS
DECODE

POLL

1
!- ;;ARALLELTOSE 'ALICONVEI_IER I

CPU BUS

BUFFERS

Figure 18. Mass Memory Bus IntBrface

channel). The voter receives the triply redundant transmission

from the mass memory bus and does a bit by bit comparison of the

transmission. If any of the bits disagree it shall output the val-

ue of the two out of three majority of that bit position. At the

same time it shall set a flag in the error latch indicating on

which line it perceived an error. The error latch flags are stored

within the error register until acted upon by the software.

In the case of a duplex mass memory bus (or triplex downmoded to

duplex) the voter will only have two inputs to function with. The

output of the voter will always have an error in the nonexistent

channel position. This error may be masked by the software. If

either of the other channel positions indicates an error, then it

will be an indication that there was a disagreement between the two

data paths. With only two data copies the voter can detect an

error but not isolate it. Isolation of the fault will depend upon

the detection of errors at the receiver prior to the voter.

To support receipt of simplex data (including triplex/duplex

downmoded to simplex) a bypass of the voter shall be provided. In

the simplex configuration, any data source received by the voter

may be selected. The bypass shall be constructed so as to insure

that a failure causing the bypass mode is detectable.

65

(2) Data Conversion

The output of the voter is a serial bit stream. This output is

applied to the serial to parallel converter. The output of the

serial to parallel converter can be read by the CPU through the
buffers.

(3) Transmitter

Each channel transmits on one of the redundant mass memory busses.

All redundant processors load their mass memory transmit buffer

with the data to be transmitted. The output of the buffers are

serialized and applied to the transmitter, which if enabled, tran-
smits it.

The transmission length shall be limited by the channel hardware

and there shall be a delay in reenabling to protect against babbl-

ing mode faults.

(4) Control

The interface shall contain a control module that enables and disa-

bles functioning of the interface,

(5) Bus Contention

Each transmission on the mass memory bus is Preceded by a con-

tention for the bus among those processing elements that are ready

to transmit. The Laning poll technique shall be used for resolving

contention. At the end of the previous transmission the protocol

receiver and transmitter will be gated off and the contention logic

enabled. Any processing element that requires the network will

wait a prescribed time after normal transmission ends and start the

po11. Any unit not entering the poll within a specified time of

the start will be locked out of this poll sequence. Whenever an

element observes the completion of the po11, even when it was not a

participant, it will switch over to the data mode. This will allow

all elements on the network to receive the data transmission, and

will be performed totally in hardware so as not to burden the soft-

ware. The polling is performed simultaneously on all three mass

memory busses. When the poll is complete the FTP will do an

exchange to verify that all elements have the same poll result.

3.5.1.1.3.3 CP/IOP Communication. The CP and 10P will communicate with

one another through a shared memory. Signalling via interrupt requests

will provide notification of a waiting message.

(l) Shared Memory

The shared memory is a mechanism for allowing the computational

processor and the input output processor to communicate. It is

used by both as a mail box to leave messages, requests and data for

each other. This memory space shall contain 2048, 16 bit words

with an access time of two microseconds or less per word.

66

(2) Interprocessor Interrupts - The CP and The lOP shall each have an

output command that requests an interrupt of the other processor.

3.5.1.1.3.4 Fault Tolerant Clock. Synchronism between channels of the
FTP is maintained by the Fault Tolerant Clock (FTC). Signals from FTC ele-
ments within each channel are distributed to all channels, each channel's

FTC element operating so as to remain in synchronism with a derived major-

ity of the FTC signals. The presence of any single fault within the ele-
ments of the FTC will not cause unfailed channels to diverge.

A functional mechanization of the Fault Tolerant Clock is shown in Fig-

ure 19 on page 6B. Each channel contains an FTC element, consisting of a

clock receiver and digital phaselocked loop, which produces interna]

clocking pulses for that channel and an output signal F. The F's from the

three elements are distributed to the interstages, where clocks for the

interstages (T) are derived and returned to the channels. Each element

then adjusts its own output so as to remain in phase with the majority of

the incoming T signals.

It can be shown that a minimum of four clock elements are required to

tolerate a single congruency fault in a single level system. In this sys-

tem, the inclusion of the interstage clock receivers (already needed for

other purposes) obviates the need for a Fourth clock element.

Fault Tolerant Clock parameters that, for example, may suit the AIPS

proof-of-concept system are:

Processor clock frequency: 8 MHz

FTC per!od (F and T):

Worst case misaIignment

(any F or T):

2.625 microseconds

0.45 microseconds

In order that Fault Tolerant Clock failures be detectable a means shall be

provided for the observation of errors at the element and interstage

inputs. It is also required that a means of causing controlled misbehavior

be included to demonstrate the availability of the redundant paths and

error masking capabilities.

The stability of the individual oscillators shall be I0-4 seconds/seconds
or better.

3.5.1.1.3.5 Power Conditioning Each channel of the FTP shall contain

power conditioning, independent of the other channels. The power condi-

tioning will accept power from the AIPS power system and convert it to

suitable voltages to operate the channel.

3.5.1.2 Fault Tolerant Multiprocessor (FTMP)

The fault tolerant multiprocessor is made up of processing elements that

can be reconfigured into triplex units. The elements of a triplex unit,

or triad, are synchronized to each other. Units can be added, removed or

reassigned to triads under control of other triads. In case of failure a

67

A INTERNAL CLOCKS T A

I L ._

I I
i I

I

__._A ELEMENT l

I
I

I_ I _,
B INTERNAL CLOCKS I __O _ I

c_ (o a ELEMENT
D_ i 4

_' I I °
i

CINTERNALCLOCKS J _' I TC I '_ I

Figure 19. FTP Fault Tolerant Clock Functional Mechanization

unit can be taken completely off line. A typical configuration of an FTMP

is shown in Figure 20 on page 69. Each element of a triad is executing
identical software in synchronism with the other members of the triad.

One member of the FTMP is assigned the task of being the intercomputer
(IC) processor triad. Another is assigned the task of being the

input/output processor triad. Other members are used as processing ele-
ments. These assignments can be changed, under software control, as need-

ed. In the proof of concept design some processors will be capable of
being IC controllers, some I/0 controllers, some capable of controlling
both and others capable of only being computational processors. This is

pictured in Figure 21 on page 70. Triads 1 and 4 can be either IC or I/0

controllers. Triad 2 can only be an IC controller, while triad 5 can only
be an I/0 controller. Triad 3 does not have an interface to either, so
therefore can only used for computation. The quantity of each for the POC

system will be determined by the coverage required. The major elements of
an FTMP processor are specified below.

3.5.1.2.1 Fault Tolerant Clock. Synchronism between units of the FTMP

is supported by the Fault Tolerant Clock (FTC). Signals from FTC elements

within each unit are distributed to all units, each unit_s FTC element

operating so as to remain in synchronism with a derived majority of the

68

I.C. BUS #1

I.C. BUS #2

I.C. BUS #3

@
@ I/O BUS

tl
tl

Illy="°
COMPUTATIONAL

TRIAD

r Ir

ii

l/
, I,I/i I

INPUT/OUTPUT
TRIAD

INTERCOMPUTER

TRIAD

Figure 20. Fault Tolerant Multiprocessor Organization

FTC signals. The presence of any single fault within the elements of the
FTC will not cause unfailed channels to diverge.

A functional mechanization of the Fault Tolerant Clock is shown in Fig-

ure 22 on page 71. Each unit contains an FTC etement, consisting of a

clock receiver and digital phase-locked loop, which produces internal

clocking pulses for that channel and an output signal F.

It can be shown that a minimum of four clock elements are required to

tolerate a single congruency fault in a single level system. In the FTMP,

a11 clock elements have access to the outputs of a11 others. Four are

designated as active by control registers associated with each, and all

elements synchronize to the active four. Replacing an active element con-

sists of merely notifying each element which four are to be active.

Fault Tolerant Clock parameters that, for example, may suit the AIPS

proof-of-concept system are:

Processor clock frequency: 8 MHz

FTC period (F and T) : 2.625 microseconds

69

'll
II

II
IiI
III

°

Figure 21. Fault Tolerant Multiprocessor Assignments

Worst-case misalignment

(any F or T): 0.45 microseconds

In order that Fault Tolerant Clock failures be detectable a means shall

be provided for the observation of errors at the element and interstage

inputs. It is also required that a means of causing controlled misbehavior

be included to demonstrate the availability of the redundant paths and
error masking capabilities.

The stability of the individual oscillators shall be 10-4 seconds/seconds
or better.

3.5.1.2.2 FTMP Processing Element

Each processing element shall be comprised of the elements as shown in

Figure 23 onpage 72.

3.5.1.2.2.1 Central Processor Unit The central processor unit (CPU) is

the computational processing element. All data processing and manipu-

lation is performed by the CPU. It will operate with a clock speed appro-

priate for the chosen processor and the processor shall function with

virtual memory through a memory management unit. Memory accesses that are

not resident within the local storage area will cause page faults. The

processor shall be capable of suspending processing, reloading memory
with the required data and restarting program execution without loss of

continuity. Upon power up, all CPUs will be reset. This reset shall clear

70

FROM
OTHER
UNITS

/--b--

FTC
w ELEMENT

0
I

I FTCCONTROL F

TO OTHER FTC UNITS

_I TO/FROM SYSTEM CONTROL

Figure 22. FTMP Fault Tolerant Clock Functional Mechanization

all working registers and flags. As part of the initialization the CPU

shall reset all interfaces to a predetermined state.

3.5.1.2.2.2 Memory The memory module contains the local storage for a

processing module. It conta[ns all program storage, constants and vari-

ables necessary to perform the assigned tasks. Each memory shall be com-
prised of random access memory (RAM) and read only memory (ROM). The

total of RAM and ROM is 128k bytes.

(]) RAM

The RAM may be used for the storage of task programs assigned to

the triad of which this processor is a member. Programs are loaded
into RAM from shared memory. The RAM shall have an access time

such that no more than two processor wait cycles are required for

access,

(2) ROM

The R0M shall contain the fixed operational programs, subrou-

tines, constants, initialization and diagnostic programs. The R0M

should have an access time such that no more than two processor

wait cycles are required for access.

3.5.l.2.2.3 Timers The timers are used for keeping track of real time,

timing tasks, and maintaining a check on the health of the hardware and
software. Each timer module shall contain a real time clock, an interval

timer(s), and a watchdog timer.

71

l FAULT TOLERANT
CLOCK

ROM [REAJINTERVAlTMCLOCK TIMER

I
los], COM,STRAPPED I NETWORK I

CONNECTIONS i INTERFACE I, INTERFACE

J--'lt---T Jllttt

INTERNAL
CPU BUS

POLLING

I INPUT/OUTPUT
NETWORK

INTERFACE BUILT-IN J
TEST

t
MASSMEMORY

BUS
INTERFACE

IIt

Figure 23. FTMP Typical Processing Module

(1) Real-Time Clock

The real time clock shall be a 32 bit hardware register which can
be preset to the system time under program contro]. Once set the

real time clock will increment every 50 to 100 microseconds (incre-
ment to be specified during preliminary design). When the count
reaches the maximum value it will reset to zero and continue to

count up. Each memory element within the FTMP shall have a real-

time clock. All processor triads shall have access to the real-

time clock via the multiprocessor cross strap bus. When a triad

requires the real time it will be available by reading the memory
location assigned to the clock.

(2) Program Interval Timer(s)

The interval timer(s) shall be a IG bit hardware register that can

be preset to any value by the software. Once set the interva] tim-

er shall decrement to zero and stop. At this time an interrupt is

requested. The interval timer(s) shall be capable of being read or

written. The interval timer(s) shal] have a resolution between 8

and 24 microseconds based upon available timing.

(3) Asynchronous Watchdog Timer

72

The asynchronous watchdog timer is a fault detection mechanism
which provides an overall check on the health of-the processing
element. Under normal operating conditions the software must
reset it periodica]]y. This verifies that the system is func-
tional. If not reset or a hardware failure prohibits service, the
asynchronouswatchdog timer sha]l reset the CPU. It shall be pos-
sible to inhibit the asynchronouswatchdog timer whenoperating in
the test mode. The asynchronouswatchdog timer shall be independ-
ent of the FTMPoscillators.

3.5.1.2.2.4 Built-in Test Features The system component shall have

built-in test features to provide visibility into the system operation.

The following features shall be included.

(I) Dual Port Memory

A dual port memory shall provide a communication path between the

Proof-of-Concept system and the Integration and Evaluation Facili-

ty host computer. The facility host computer shall be capable of

sequentially reading the data stored in all dual port memories in

all elements of the system. Additionally, it shall be possible for

the facility host computer to download programs and commands to the

processing elements without use of the communication networks.

This dual port memory will appear to the processing elements and

the facility host computer as 2048 words of RAM memory.

(2) Bus Monitor

Each processing element shall have a nonintrusive bus monitoring

capability. This monitoring capability should be capable of

detecting specified events within the processor. This capability

shall reside on an independent circuit board such that the feature

may be installed or deleted as required. Detectable events shall

be:

(a) Condition Compare

Each monitor shall have an address and data compare register

which can be read or written by either the processor or through
the external test device, such as the the facility host comput-

er. The address compare register will be used to continually
monitor the address bus. Whenever an address match occurs,

several results shall be possible.

(i) A flag will be set indicating a match; This flag will be

accessible by the facility host computer through the dual

port memory.

(ii) An interrupt will be provided and if enabled a "halt" of

the processing element will occur.

(iii) A global halt signal shall be transmitted to other proc-

essing elements. (The results at other sites will depend

upon the enable or disable of the signal.)

73

Each of these conditions shall be selectively enabled or disa-

bled. In addition, response to an external- halt signal, from

another processing element, shall be selectively enabled or

disabled. The address compare shall function on the address

field of the processor and shall be capable of indicating a

match within two fault tolerant clock cycles of its occur-

rence.

(b) Selected Exceptions

Each monitor shall be capable of displaying the occurrence of

exceptions. A method of signalling an external test device

whenever an exception occurs shatl be provided. The

exceptions implemented shall be documented in the hardware

design specification.

(c) External Commands

Each processing element shall have the capability of accepting
commands from external test devices. Commands that shall be

imp]emented are= halt on condition; read memory; halt from

external condition; start program execution.

(d) The test software shall have the capability to start or stop

the real time clock, the interval timer(s), and the asynchro-

nous watchdog timer.

3.5.1.2.2.5 Fault Tolerant Cross Strapped Connections Interface

Each FTMP processor shall be connected to al1 shared memory elements by

dedicated communication paths. That is, a processor wil] have a private
connection to all shared memory elements. Whenever a processing element

transmits, it transmits to all shared memory elements simultaneously, it

is necessary, when an element (processor or shared memory element) is con-

figured in a triad, to know which of its communication receivers are
attached to other triad elements. The organization of the connection

interface is shown in Figure 24 on page 75. The following is a

description of how this interface shal] function.

(l) Configuration and Control Registers

AI] members sha]] have configuration registers to identify triad

membership. This configuration shall be nonvolatile. Upon power-

up, one of the triads must run a system configuration task. Triad

membership is transmitted to all elements by address. Part of this

triad membership contains the bus assignments to be used for vot-

ing. The configuration register then configures the three of N

receiver to select on]y the buses needed for voting.

(2) Three-of-N Receiver

The three-of-N receiver: receives data, converts logic levels, and

supp]ies the three busses specified by the configuration register
to the voter.

74

oooeeeeo L

3-OF-N
RECEIVER

1 11
VOTER I

I ERRORI I SER,A TOREGISTERI [PARALLEL CONVERTER[

H CONFIGURATION
REGISTER [

CPU BUS

l eeeeoeoeooe I

N LINETRANSMITTER

I PARALLEL TO ISERIAL CONVERTER

Figure 24. Cross Strapped Connection Interface

(3) Voter and Error Latch

The voter takes the three seria] buses from the receiver and does

a bit by bit comparison of the transmission. If any of the bits

disagree it wi]l only output the majority of that bit position. At

the same time it wil] set a flag in the error latch indication on

which line it perceived an error. This flag is stored within the

error]atch unti] acted upon by the software.

(/_) Data Conversion

k

All elements must contain the necessary logic to convert the voted

data from a seria] data stream to a para]]e] word for the CPU to

read. This is performed in the serial to paraIle] converter.

Additionally, when the CPU has data to be sent to other members,

memories or I/0 it must create a serial data stream from the CPUs

parallel data word. This is performed in the parallel to serial

converter.

(5) Transmi tter

The transmitter takes the output of the parallel to serial convert-

er encodes it into the signalling protoco}, converts it to the

required voltage level and transmits it onto the output lines.

3.5.1.2.2.6 Intercomputer Network Interface

Some of the FTMP processing elements, the number to be determined during

preliminary design, shall contain interfaces to the intercomputer net-

work. Those that contain the interface can be configured in triads that

can control the IC network. This is shown in Figure 21 on page 70 as a

triad interface to the IC Node. A detail of the major components of this

interface is shown in Figure 25 on page 76. Each lOP listens to a]I three

75

II I
E1 _-_-_ E2 1

_T

! _E_E'VE_I

I VOTER

,-II l
ISER'ALTOPAR_'LELL__I

CONVERTE.I I

CPUBUS 1

E1 E2 E3

J ERRORREGISTER

E3

' T

Figure 25. FTMP Intercomputer Network Interface

IC buses, but transmits on one. The following describes the function of
each interface element.

(1) Voter, Error Latch and Receiver

The receiver shall accept the serial data stream, verify compli-
ance with the network protocol, convert to internai logic levels

and timing, and check for transmission errors. If the data does

not comply with the protocol, the receiver shall reject the trans-

mission until a valid protocol synchronization is received. If a

transmission error is experienced, the event shall be stored in an

error register. This error register shall store the errors until
the CPU software reads and clears it.

In the case of the trip]ex intercomputer network there is a receiv-

er for each of the three IC buses. The outputs from the three

receivers are applied to each of the FTMP lOP voters (one per

redundant channel). The voter receives the triply redundant tran-

smission from the Intercomputer network and does a bit by bit com-

parison of the transmission. If any of the bits disagree it shall

output the value of the two out of three majority of that bit posi-

tion. At the same time it shall set a flag in the error latch indi-

76

cating on which line it perceived an error. The error latch flags

are stored within the error register until acted upon by the soft-

ware.

In the case of a duplex intercomputer network (or triplex downmoded

to duplex) the FTMP voter will only have two inputs. The output of

the voter error latch will always indicate an error in the nonex-

istent channel position. If either of the other channel positions

indicates an error, then it will be an indication that there was a

disagreement between the two data paths. With only two data copies

the voter can detect an error but not isolate it. Isolation of the

fault will depend upon the detection of errors at the receiver pri-

or to the voter.

In support of simplex (or triplex/duplex downmoded to simplex) a

bypass of the voter shall be allowed. In the simplex configuration

any data source received by the voter may be selected, by the soft-

ware,_ for use instead of the voter output. The bypass shall be
constructed so as to insure that a failure causing the bypass mode

is detectable. Congruency is performed by doing a simplex write to

the FTMP shared memory.

(2) Data Conversion

The output of the voter is a serial bit stream that has had vote

discrepancies masked. This output is then applied to a serial to

parallel converter. The output of the serial to parallel converter

can be read by the CPU through the buffers.

(3) Address Decode

Each subscriber that is connected to the intercomputer bus shall

have a unique address for identification. All functional sub-

scribers shall receive all messages that appear on the intercom-

purer network. It is the responsibility of the subscriber to

determine which messages are intended for it. This is the function

of the address decoder. As each message is received, the address

decoder will look at the address portion of the message and if it

finds a match notify the CPU of a waiting message. It shall be

possible for the address decoder to respond to broadcast messages

as well as specific messages.

(4) Transmitter

Each channel of an FTMP is enabled to transmit on one of the inter-

computer buses. Each CPU loads the parallel to serial converter

with a message to be sent. This serial bit stream is then applied

to the transmitter, which encodes the message into the network pro-

tocol and transmits on the assigned bus.

The transmission length shall be limited by the channel hardware

and there shall be a delay in reenabling to protect against babbl-

ing mode faults.

77

(5) Control

The interface shall contain a control module that enables and disa-

bles functioning of the interface. It also provides the sequence

control for the protocol encoder and decoder and is under software

control of the CPU.

(6) Network Contention

Each transmission on the intercomputer network is preceded by a

contention for the network among those processing elements that

are ready to transmit. The Laning poll technique shall be used for

resolving contention. At the end of the previous transmission the

protocol receiver and transmitter will be gated off and the con-

tention logic enabled. Any processing element that requires the

network will wait a prescribed time after normal transmission ends

and start the poll. Any unit not entering the poll within a speci-

fied time of the start will be locked out of this poll sequence.

Whenever an element observes the completion of the poll, even when

it was not a participant, it will switch over to the data mode.
This will allow all elements on the network to receive the data

transmission, and will be performed totally in hardware so as not

to burden the software. The polling is performed simultaneously on

all three IC buses. When the poll is complete the FTMP will do an

exchange using the shared memory to verify that all elements have

the same poll result.

3.5.1.2.2.7 Input/Output Network Interface

Some of the FTMP processing elements, as determined during-preliminary

design, shall contain an interface to the input output network. Those
elements that contain the interface will be configured into triads that

can be assigned the task of controlling the I/O network. This is shown in

Figure 26 on page 79. The I/0 network is simplex and therefore can only

have one transmitter enabled at a time. However, all members of the triad

shall listen and compare results to assure source congruency. The module

that is selected to transmit can be disabled and another enabled by the

other triads in case of a failure. The major elements of the interface

are described below.

(1) Receiver

The receiver shall accept the serial data stream, verify compli-

ance with the network protocol, convert to internal logic levels

and timing, and check for transmission errors. There is a receiver
for the I/0 bus in each triad member.

(2) Data Conversion

The output of the receiver is a serial bit stream. This output is

applied to a serial to parallel converter. The output of the seri-

al to parallel converter can be read by the CPU through the buff-

ers.

78

I

RECEIVER ,t CONTROL

1
/

SERIAL TO PARALLEL ADDRESS L
CONVERTER _ DECODE I

TRANSMITTER]

PARALLEL TO SERIAL I

CONVERTER I

BUFFERS

CPU BUS

Figure 26. FTMP Input/Output Bus Interface

(3) Address Decode

Each device that is connected to the input output bus shall have a

unique address and a broadcast address for identification. A]]

functional devices receive a]l messages that appear on the input

output network. It is the responsibility of the device to deter-

mine which messages are intended for it. This is the function of

the address decoder. As each message is received, the address

decoder must look at the address portion of the message and if it

finds a match notify the CPU of a waiting message. It should be

possible for the address decoder to respond to broadcast messages

as well as specific messages.

(4) Transmitter

Only one member of the triad is enabled to transmit on the input

output bus. However, since all members of the triad are executing

the same software, each CPU loads the paralle1 to serial converter

with a message to be sent. This serial bit stream is then applied

to the transmitter encoder, which encodes the message into the net-

work protocol. The output of the encoder is applied to the input

of the transmitter. Only one transmitter is enabled, but this is

invisible to the CPU.

The transmission length shall be limited by the channel hardware

and there shall be a delay in reenabling to protect agains babbling

mode faults.

79

(5) Control

The interface should contain a control module that enables and dis-

ables functioning of the interface. It also provides the sequence

control for the protocol encoder and decoder and is under software
control of the CPU.

(G) Network Contention

Each transmission on the input/output network is preceded by a con-

tention for the network among those processing elements that are

ready to transmit. The Laning poll technique shall be used for

resolving contention. At the end of the previous transmission the

protocol receiver and transmitter will be gated off and the con-

tention logic enabled. Any processing element that requires the

network will wait a prescribed time after normal transmission ends

and start the poll. Any unit not entering the pol] within a speci-

fied time of the start will be locked out of this poll sequence.

Whenever an element observes the completion of the poll, even when

it was not a participant, it will switch over to the data mode.

This will allow all elements on the network to receive the data

transmission, and will be performed totally in hardware so as not
to burden the software.

3.5.].2.2.8 Mass Memory Bus Interface The mass memory bus interface

shall provide the means for transmitting and receiving mass memory data.

Since the mass memory is on a triply redundant contention bus each proces-

sor must contend for access to the mass memory bus.
Figure 27 on page 8] is a block diagram of the mpss memory interface. The

following is an explanation of the major elements of the interface.

(I) Voter, Error Latch and Receiver

The receiver shall accept the serial data stream, verify compli-

ance with the network protocol, convert to internal logic levels
and timing, and check for transmission errors. If the data does

not comply with the protocol, the receiver shall reject the trans-
mission until a valid protocol synchronization is received. If a
transmission error is experienced, the event shall be stored in an

error register. This error register shall store the errors until
the CPU reads and clears it.

In the case of the triplex mass memory bus there is a receiver for

each of the three mass memory buses. The outputs from the three

receivers are applied to each of the voters (one per redundant

channel). The voter receives the triply redundant transmission

from the mass memory bus and does a bit by bit comparison of the

transmission. If any of the bits disagree it shall output the val-

ue of the two out of three majority of that bit position. At the

same time it shall set a flag in the error latch indicating on

which line it perceived an error. The error latch flags are stored

within the error register until acted upon by the software.

8O

MASS MEMORY

BUS

E I E 2 E3

111

ERROR]REGISTER

,, CPU BUS

E3

Figure 27. Mass Memory Bus Interface

In the case of a duplex mass memory bus (or triplex downmoded to

duplex) the voter will only have two inputs to function with. The

output of the voter will always have an error in the nonexistent

channel position. This error may be masked by the software. If

either of the other channel positions indicates an error, then it

will be an indication that there was a disagreement between the two

data paths. With only two data copies the voter can detect an

error but not isolate it. Isolation of the fault wi]l depend upon

the detection of errors at the receiver prior to the voter.

To support receipt of simplex data (including triplex/duplex

downmoded to simplex) a bypass of the voter shall be allowed. In

the simplex configuration, any data source received by the voter

may be selected. The bypass shall be constructed so as to insure

that a failure causing the bypass mode is detectable. Congruency

is performed by doing a simplex write to the FTMP shared memo memo-

ry.

(2) Data Conversion

The output of the voter is a seria| bit stream that has had vote

discrepancies masked. This output is then applied to a serial to

8]

parallel converter. The output of the serial to parallel converter
can be read by the CPU through the buffers.

(3) Transmitter

Each channel transmits on one mass memory bus level. All redundant

CPUs load their mass memory transmit buffer with the data to be

transmitted. The output of the buffers are serialized and applied
to the transmitter and if enabled transmits it.

The transmission length shall be limited by the channel hardware

and there shal] be a delay in reenabling to protect against babbl-
ing mode faults.

(4) Control

The interface shall contain a control module that enables and disa-

bles functioning of the interface.

(5) Bus Contention

Each transmission on the mass memory bus is preceded by a con-
tention for the bus among those processing elements that are ready

to transmit. The Laning poll technique shall be used for resolving

contention. At the-end of the previous transmission the protocol
receiver and transmitter will be gated off and the contention logic

enabled. Any processing element that requires the network will
wait a prescribed time after normal transmission ends and start the

poll. Any unit not entering the poll within a specified time of

the start will be locked out of this poll sequence. Whenever an
element observes the completion of the po11, even when it was not a
participant, it will switch over to the data mode. This will allow

all elements on the network to receive the data transmission, and

will be performed totally in hardware so as not to burden the soft-

ware. The polling is performed simultaneously on all three mass
memory busses. When a poli is completed the triad will do an

exchange to verify that all membersof the triad have the same poll
result.

3.5.1.2.2.9 Registers Each processing element contains registers that
can be accessed from the cross strapped interconnections and appear as

locations on the shared memory space. These registers are written into by
triads and can be read by the processor on its internal CPU bus.

(1) tnterprocessor Communication Registers (IPC) - The interprocessor

communication registers are used by triads to send messages to oth-
er triads or CPUs directly.

(2) Triad ID - The triad id register is written by the triad that is

performing the configuration task. This register will contain the

triad membership that this processor has been assigned to.

(3) Bus Assignment - The bus assignment register is written by the tri-

ad that is performing the configuration task. This register will

82

contain the identification of the buses that the triad is to use

for voting. Data that is received on these buses will be assumed

to be triad specific and be used for voting.

3.5.1.2.3 Shared Memory

Each FTMP contains a shared memory that is used for program and data stor-

age.

In addition to the memory array, the shared memory contains control regis-

ters that are addresses within the memory space. These control registers

can be accessed from the cross strapped buses and individually from the

processor or memory internal bus to which it is connected. Within the

shared memory these registers are written by processor triads and are used

to identify which memory triad a memory is assigned to. In addition the

memory is informed of the current makeup of the processor triads for

receiver voting and transmitter selection, and memory relocation for

address space definition. Within the memory space there are a set of reg-

isters that the processors use. They include a triad identification reg-

ister for membership inclusion and interprocessor communication registers

which allow processors to communicate directly without using the shared

memory as an intermediary. Shared memory consists of a number of ele-

ments. The memory elements are assembled into triads by the processor

triads. Each memory triad is assigned to a memory space. The shared memo-

ry shaft be designed such that any processing triad appears to have dedi-

cated use of the memory. The organization of the shared memory is shown

in Figure 28 on page B3. The shared memory controller shal] provide "test

and set" capability for any word or bit in read/write memory. In addi-

tion, the shared memory controller shall provide a capab[]ity for proces-

sor triad to processor triad communication, including "notification that

a processor to processor communication has occurred." The major elements

of the shared memory are described below.

(3) Memory Devices

Each shared memory contains memory devices which can be RAM or ROM

or a combination of both. Each memory element will contain 25Gk

bytes.

(2) Receivers

Each memory element contains a receiver which receives the trans-

mission from each processor. The receiver provides any necessary

logic level conversion and drive capabilities. The output is

applied to the three - of - N selector.

(3) Three-Out-of-N Selector

Each memory shall contain the same number of three-out-of-N selec-

tors as there are triads. This is necessary so that each triad can

be identified and function as if the shared memory were dedicated

to it. The memory receives the processor triad configuration com-

mands and dedicates a selector to only look at the three lines com-

ing from that processing triad. Those three lines only are then

83

J 3-O_-N I
SELECTOR NO. 1 j4 I

- _ _ _ I

ERRORLATC. I -RE_ISTERf
1 '

PARALLEL CONVERTER

I

PARALLELTO !SDATit

SERIAL

CONVERTER NO.|

PARALLEL TO
SERIAL

CONVERTER NO.M

l... ... J
NO. ! • = * SELECTOR NO. M

l f _ f
.. :1 VOTERAND

ELWlq ERROR LATCH

SDATA1 1

.,. J SERIAL TO JPARALLEL CONVERTER

__1

JI.
• CONTRO / DATA ADDRESS

I MEMORY ARRAY_'ATAM AND CONTROL REGISTERS

DATA OUT
4

•ee l

SDATAM

EL1 ELM

J STATUSREGISTER

ERRORS

Figure 28. FTMP Shared Memory

passed through to the voter connected to this selector.
the voter will only see data from one triad.

(4) Voter and Error Latch

Therefore

The outputs of the three-out-of-N selector are first deskewed to

correct for transmissions delay differences, and then applied to
the input of the voter, The voter performs a bit by bit comparison

on the data. If any bit differs, the output of the voter will be

the majority of the two out of three in agreement, In addition when

a difference is detected a record is kept upon which line this
error occurred. The output of the voter is then applied to a serial
to parallel converter, and the results of the error latch "0Red"

into a status register.

(5) Serial to Parallel Converter

The voted output is entered into a serial to parallel converter to

assemble the word into paralle1 form. When a full message has been

received the converter sets a flag for the sequencer to request

84

service. The serial to parallel converter must also hold the data

while waiting for the actual access to the memory. The output of

the converter is applied to a data multiplexer.

(6) Multiplexer

The multiplexer, under control of the sequencer, selectively
applies the address and data (if a write) to the memory devices.

At the same time the control portion of the message is decoded and

used to determine the reason for the access. The multiplexer must

present the data for the proper time to perform the function.

(7) Paral 1el to Serial Converter

There is a parallel to serial converter provided for every proces-
sor triad. The parallel to serial converter is used when ever a

processor triad requests a read operation. The data is fetched

from the memory devices and loaded into the appropriate serial to
parallel converter for transmitting to the requesting triad. Once

the data is loaded into the converter the memory is free to perform

the next request.

(8) Transmitter

Each transmitter section is assigned to a processing triad through

the configuration register which only enables the lines to its pro-

ces_or triad. This is necessary so that the memory can communicate

with multiple processors simultaneously. The data is converted to

the line protocol and signaling levels and transmitted on the three

appropriate lines.

(9) Sequencer

The sequencer is the main controller for the memory. It shall

accept the triad commands for the memory. Assign a three out of N

receiver and transmitter pair for each processor triad as they are

assigned. It receives the message in flags from the serial to par-

a11e1 converters and schedules service for that triad. It must

also examine the control portion of the message to schedule the

required task.

(10) Status Register

The status register contains the error latch information for all

the voters. It can be read and cleared by the any triad.

(11) Memory Relocation Register

The relocation register is written by a triad to indicate the

addresses this memory module is to respond to. It will then map

the address into the physical address within the module.

(12) Bus Assignment Registers

B5

The bus assignment registers contain the current processing triad

membership and the buses that they are to use. The memory uses the
bus assignment register to assign its input receiver/transmitter

and data selection circuits to the corresponding triads.

3.5.1.3 Intercomputer Network Node and Interconnections

The intercomputer network is comprised of nodes arranged in simplex,

duplex, or triplex layers. The nodes within a]ayer are connected by
links. There is no interconnection between]ayers at a node. A node is a

communication switching point with five input output ports. Figure 29 on
page 86 is a basic representation of a node. The internal construction of

each port of a node is shown in Figure 30 on page 87. Since a node does
not have knowledge of the configuration of the network its receivers must

always be enabled. Transmitters are enabled or disabled upon command. As
a message is received, it will be regenerated and retransmitted on all

enabled ports. At the same time, the message is decoded within the node.

If the message is addressed to the node it will respond to the command

embedded within the data. If the message is addressed elsewhere it wil]
check for a valid transmission, latch observed error conditions and reset

the receiver for the next transmission. When status is requested.from the

node, the observed errors wi]] be transmitted within the status message.

Hardware will be used to inhibit selected ports from responding to or gen-

erating reconfiguration commands. The intent is to inhibit certain desig-
nated, attached processors from being able to reconfigure any node.

Reconfiguration commands generated by those processors will be ignored by
the attached node and not transmitted to any other node. Ports (whether

active or not) that are not inhibited will be capable of receiving and
processing reconfiguration commands. Reconfiguration commands enable or

disable selected port transmitters. Ports will be reconfigured whenever a
legal command is received.

Some components are unique to a port (transmit/receive) and some are

shared by all the ports (control). The following is a description of the
basic components of a node.

3.5.1.3.1 Transmit/Receive Components

3.5.1.3.1.1 Receiver The receiver accepts the signal level on a link and

converts it to the internal logic level of the port. The receiver also
isolates the node from electrical failures of the link.

3.5.1.3.1.2 Protocol Decoder The protocol decoder accepts the serial
data stream from the receiver, checks for protocol compliance and trans-
mission induced errors. The errors aFe stored for transmission to GPCs

when requested. It then synchronizes with the external transmission clock

and assembles the message into parallel words. These parallel words are
temporarily stored for the control section to examine.

3.5.1.3.1.3 Address Decoder The address decoder compares the address

portion of the message with its own internally stored address. If the

address matches the decoder signals the control section that there is a

86

PORT 1

PORT 5 _%

PORT 2

PORT 4 " _ w_

PORT 3

Figure 29. Intercomputer Network Node

message waiting to be processed. If the address does not match the decod-
er section is cleared to wait for the-next message,

3.5.1.3.1.4 Data Decoder If a message is addressed to the node the data

decoder is used to extract the type of command from the data part of the

message. The decoded command is sent to the control section,

3.5.1.3.1.5 Signal Regeneration Logic The signal regeneration logic is
used to reconstruct the fide]ity of the transmission. This is necessary

because of the modification to a signal as it passes through circuit ele-
ments. After several transitions through circuit e]ements the trans-

mission could appear to be modified. The input to the regeneration logic
is the OR of all the ports. The output of the regeneration logic is

applied to the input of the port transmitter.

3.5.l.3.l.6 Transmitter The transmitter converts the output of the pro-

tocol encoder or regeneration logic into the signaling leve]s used on the

links. It can be enabled or disabled by the port configuration register.

3.5.1.3.2 Control Components

3.5.1.3.2.1 Node Sequencer and Control The node sequencer and control

provides the central control for node operations. It accepts inputs from

the address decoder indicating a message for the node has been received.

It then decodes the command. There are two types of commands received by

the node; l)Reconfiguration commands and 2) Status requests. Configura-

tion commands are passed to the port configuration register to control the

ports. Status and error messages when requested by the processing site

87

PORT
IN

FROM
OTHER
PORTS

RECEIVERS

I TO
OTHER
PORTS

PRO TOCO&L DECODE J

SERIAL TO PARALLEL I

CONVERTER I

ADDRESS
DECODE

FROM
OTHER
PORTS

ADDRESS
& DATA
DECODE

DATA
DECODE

SIGNAL
REGENERATION

LOGIC

-- I TO
OTHER

PORTS

]

tPROTOCOL I

ENCODER I

{STATUS, ERRORS, ETC.) I

I

CONTROL I

PORT ENABLEI

,I PORT II
,/1 CONFIGURATION I I

R i '1 CONTROLJ i
----11-- --1

\ PORT

PORT
ENABLE

TO OTHER
PORTS

TRANSMITTERS

Figure 30. Intercomputer Network Node Port

GPCs are passed to the protocol encoder. All control functions necessary
to operate the encoder and decoder and the generation of timing signals
for the node are generated within the sequencer.

3.5.1.3.2.2 Port Configuration Control The port configuration control
accepts the decoded reconfiguration commands from the sequencer and ena-
bles or disables the individual port transmitters as commanded. The last

command is stored until rewritten by the next command. This register can
be read into the encoder if the status of the node is requested.

3.5.1.3.2.3 Protocol Encoder The protocol encoder receives the node

response to status requests and encodes it into the]ink protocol. The
output of the encoder is sent to the transmitters.

3.5.1._ Input Output Network Node and Interconnections

The input output network is comprised of simplex nodes. Nodes are inter-

connected by links. A node is a communication switching point with five

input/output ports. Figure 31 on page 89 is a basic representation of a

node. The internal construction of each port of a node is shown in Fig-

ure 32 on page 90. Since a node does not have knowledge of the configura-
tion of the network its receivers must always be enabled. Transmitters

are enabled or disabled upon command. As a message is received, it will

88

PORT 1

PORT 5

PORT 4 " _ _,,"_

PORT 3

PORT 2

Figure 31. Input/Output Network Node

be regenerated and retransmitted on all enabled ports. At the same time,
the message is decoded within the node. If the message is addressed to the

node it will respond to the comn_and embedded within the data. If the m_s-

sage is addressed elsewhere it will check for a valid transmission, latch
observed error conditions and reset the receiver for the next trans-

mission. When status is requested from the node, the observed errors will

be transmitted within the status message.

Hardware will be used to inhibit selected ports from responding to or gen-

erating reconfiguration commands. Ports that are not so inhibited will be

capable of receiving and processing reconfiguration commands whether

active or not. Reconfiguration commands enable or disable selected port

transmitters. Ports will be reconfigured whenever a command is received.

Some components are unique to a port (transmit/receive) and some are

shared by all the ports (control). The following is a description of the

basic components of a node.

3.5.1.4.1 Transmit/Receive Components

3.5.1.4.1.I Receiver The receiver accepts the signal level on a link and

converts it to the internal logic level of the port. The receiver also

isolates the node from electrical failures of the link.

3.5.1.4.1.2 Protocol Decoder The protocol decoder accepts the serial

data stream from the receiver, checks for protocol compliance and trans-

mission induced errors. The errors are stored for transmission to GPCs

when requested. It then synchronizes with the external transmission clock

89

PORT
IN

FROM
OTHER
PORTS

RECEIVERS

t TO
OTHER
PORTS

f--

I
 ROTOCO DECODEI I

SERIALTOPARALLELII
CONVERTERI t

ADDRESS
DECODE

FROM
OTHER
PORTS

ADDRESS
& DATA
DECODE

DATA IDECODE

I SIGNAL
REGENERATION

LOGIC

PROTOCOL
ENCODER

(STATUS. ERRORS. ETC.)

_ PORT

-- I TO
OTHER
PORTS

]

} ,II
I
I
I

CONTROL
PORT ENABLEI

I 'tI PORT

II ENABLE
TO OTHER

PORTS

PORT _'_ TRANSMITTERS

I
CONFIGURATION I

CONTROL J II

J

Figure 32. Input/Output Network Node Port

and assembles the message into parallel words. These parallel words are

temporarily stored for the control section to examine.

3.5.1.4.1.3 Address Decoder The address decoder compares the address

portion of the message with its own internally stored address. If the
address matches the decoder signals the control section that there is a

message waiting to be processed. If the address does not match the decod-
er section is cleared to wait for the next message,

3.5.1.4.1.4 Data Decoder If a message is addressed to the node the data
decoder is used to extract the type of command from the data part of the

message. The decoded command is sent to the contro] section.

3.5.1.4.1.5 Signal Regeneration Logic The signal regeneration logic is
used to reconstruct the fidelity of the transmission. This is necessary

because of the modification to a signal as it passes through circuit ele-
ments. After several transitions through circuit elements the trans-

mission could appear to be modified. The input to the regeneration logic

is the OR of all the ports. The output of the regeneration logic is

applied to the input of the port transmitter.

90

3.5.].4.1.6 Transmitter The transmitter converts the output of the pro-

tocol encoder or regeneration logic into the signaling levels used on the

links. It can be enabled or disabled by the port configuration register.

3.5.1.4.2 Control Components

3.5.1.4.2.1 Node Sequencer and Control The node sequencer and control

provides the central control for node operations. It accepts inputs from

the address decoder indicating a message for the node has been received.
It then decodes the command. There are two types of commands received by

the node; 1)Reconfiguration commands and 2) Status requests. Configura-

tion commands are passed to the port configuration register to control the
ports. Status and error messages when requested by the processing site

GPCs are passed to the protocol encoder. All control functions necessary

to operate the encoder and decoder and the generation of timing signals
for the node are generated within the sequencer.

3.5.1.4,2.2 Port Configuration Control The port configuration control

accepts the decoded reconfiguration commands from the sequencer and ena-

bles or disables the individual port transmitters as commanded. The last

command is stored until rewritten by t_e next command. This register can

be read into the encoder if the status of the node is requested.

3.5.1.4.2.3 Protocol Encoder The protocol encoder receives the node

response to status requests and encodes it into the link protocol. The

output of the encoder is sent to the transmitters.

3.5.1.5 Mass Memory The AIPS mass memory is provided to support the POC

.. system concept development and proof. While the mass memory is not

required for the implementation of the AIPS concept it may be advanta-

geous, in some applications, to have one.

The P0C system mass memory consists of a generalized mass memory control-

ler and a mass memory media. It is resident on a multiplexed bus which is

in turn attached to those processing sites which are to make use of the

mass memory. Contention for the multiplex mass memory bus shall be

resolved with a Laning poll.

In the proof-of-concept system a generalized interface shall be used to

allow for the inclusion of different types of memories. Memory types that

are candidates for the proof of concept are RAM, UV PROM, EEROM, and Disc.

The type of memory device chosen shall be transparent to the subsystem

user. The mass memory will use error detection, error correcting, and/or

memory replication for data protection. Figure 33 on page 92 is a block

diagram of a generalized mass memory. The following is a description of

the major elements of the mass memory.

3.5.1.5.1 Mass Memory Controller. The P0C system mass memory controller

shall provide a generalized interface between mass memory bus and the mem-

ory medium. The memory controller shail provide single fault masking for

triplex data reception, fault detection for duplex data reception, and

shall provide the capability for simplex data reception. Internally the

memory controller shall be triply redundant. The generalized interface

shall be capable of interfacing with various types of memory, such as,

91

MASS_T
ME_VIOR Y _,-] L

I__L_ ° I I I ERROR

PARALLEL TO]SERIAL CONVERTER

I
MULTIPLEXER]7

Figure _3. Mass Memory

disc, semiconductor and bubble. The following is a list of the mass memo-

ry controller elements.

(1) Receiver

The receiver accepts data from the bus, verifies conformance to the

protocol, checks for transmission errors and formats the data for
the memory. Formatting separates the data into address, data if a

write, and command. Commands that are accepted include read, write
and send status. The address, data and commands are then trans-

ferred to the verification section. Any errors that are detected
at this level are stored in an error register which can be read by

any element presently in control of the mass memory bus.

(2) Verification

The verification section does a compare on the address, data, and

commands received from triplex or duplex elements. If the trans-
mission is from a simplex element the mass memory must be condi-

tioned not to use the voter and to accept the single string

transmission. If a miscompare occurs on the transmission such that
the verifier can not mask the error, use of the memory will be ter-

minated and an error message returned. If a maskabie error occurs,

the transaction will be completed and the perceived error condi-

tion stored in the error register.

92

(3) Transmitter

The transmitter wit1 receive the data from the memory, format and

convert it to the signaling protocol for transmission to the

requesting element.

(4) Control

The control section is responsible for examining the incoming ser-
vice requests and generating the necessary commands and timing

signals to execute the requests. It will generate the correct

responses for read, write or request for status messages. The con-

trol section will disable the memory during polling and condition
the verification section for simplex users. The write authority of

simplex users will be]imited to designated regions.

3.5.1.5.2 Memory Medium The memory section contains the storage

devices. These storage devices as mentioned above can be RAM, EEPROM,

ROM, UV PROM, Disc or magnetic tape. The choice of device can be deferred

since the interface will appear to function identically with any of the

above devices.

The POC mass memory recording medium will be selected to be appropriate

for the POC system goals of concept development and demonstration within

the laboratory environment.

3.5.1.6 Power Distribution The AIPS Power Distribution System (PDS)

provides acceptable power to each of the AIPS processing sites. Power

delivery shall continue in the presence of faults in sources, the distrib-

ution, or loads. The principal elements of the PDS are:

Prime source conditioners,

Distribution,

Control.

3.5.1.6.1 Prime Source Conditioners The prime source conditioners con-

vert power from the available sources to a form convenient for distrib-

ution and combination within AIPS. The prime sources may be aircraft power
buses, fuel cells, solar cells, or the like in a given application. In

the proof-of-concept system, the prime power sources will be building ac

power, one utility and one preferably uninterruptible. The prime source
conditioners will be specific to the application, but all must do the fol-

lowing:

(I) Convert prime power to medium voltage (28-48V) direct current for

distribution.

(2) Protect the prime source from load faults:

(a) Overcurrent

(b) Overvoltage.

93

(3) Prevent propagation of source faults that may damage the loads or

distribution system.

(4) Provide for remote shutdown of the source.

(5) Indicate source and load faults.

3.5.1.6.2 Distribution The prime source conditioners (above) and load
combiners (be]ow) serve to protect the sources, distribution, and sub-

scribers from electrical faults. The distribution further provides a

means of tolerating and circumventing physical damage that may occur at or

between processing units.

As a minimum:

A total failure event (one affecting all PDS connections) at a site or

on a path between sites should not affect the delivery of power to

other sites or allow damage to propagate beyond the area of initial

occurrence.

Since this implies dispersa] of distributed power buses, it will be neces-
sary in any app]ication to define the physical boundaries over which dam-

age may take place as the result of a single event. For the

proof-of-concept system, the boundaries will be:

(I) An enclosure, or

(2) A cable harness.

Combination

A subscriber must draw power from a number of points within the dis-

tribution system so as to not be vulnerable to single failures. Normal

combination works as follows=

If any one power link to the combiner is carrying acceptable power,

the combiner produces acceptable power.

3.5.1.6.3 Control The first level of control (protection) must be imple-

mented to occur automatically or inherently within the elements of the
PDS. Sources must be safe from defined load faults, and loads must be safe
from defined source faults. Distribution must tolerate the stresses of

maximum defined overloads due to failure of sources and loads, including
failures of protective behavior.

The second level of control (remote) permits testing of the PDS and shed-

ding of paths and elements to ascertain that other paths and elements

would be usable in the event of failures. Load shedding may be used to

terminate excessive power use by a failed subscriber or to remove a trou-

blesome processing site for good.

Manual control shall be provided to allow maintenance of subscribers or

portions of the PDS.

94

3.5.2 SystemSoftware

3.5.2.1 Genera] Requirements

3.5.2.1.1 Programming Languages The AIPS architecture allows the simul-

taneous use of multiple high order languages.

For the proof-of-concept demonstration, the AIPS software will be pro-

grammed using a single high order language, Ada.

3.5.2.1.2 Function Partitioning Guide]ines The following guidelines apply

to the partitioning of functions among multiple GPCs. The software system

will be designed to support these guidelines.

(I) There will be no inherent limitation on the number of functions

that can be supported in a sing]e GPC. The limitation will result

from memory, cpu or application specific imposed restrictions.

(2) Re]ated functions should be al]ocated to the same GPCso as to min-

imize the intercomputer information exchange traffic and the

application transport lags.

(3) Alternate function partitions that are potential configurations

resulting from function migration should be designed with consid-

eration of performance margin requirements.

3.5.2.1.3 software Stcucture The AIPS system software will place a minimum

of constraints on the required structure of the applicat)on software, l'n

particular, either or both of the two fpllowing application software

structures will be possible.

3.5.2.1..3.1 Mission Phase Structure The mission phase structure organizes
application software related to a specific mission phase into one software

process. To illustrate, an application may wish to organize its Guidance
and F]ight Control software into say, launch, cruise, and landing phases.

These phase organizations wou]d be the 'Functions' from the viewpoint of

the function migration requirements. This type of software structure can
be thought of as a vertical organization because it includes e]ements of

related 'application functions' (Guidance, Flight Control, etc.) in an
executable process.

3.5.2.1.3.2 Application Function Structure The application function

structure organizes all software for all mission phases related to an 'ap-

plication function' into one software process. For example, all Guidance

software related to say,]aunch, cruise, and landing phases would be

organized into one executable process and the Flight Control software

related to the same three phases would be organized into another executa-

ble process. These software organizations would be the 'Functions' from

the viewpoint of the function migration requirements. This type of soft =

ware structure can be thought of as a horizontal organization because it

groups all code related to a particular 'application function' together in

an executab]e process.

95

3.5.2.1.4 Growth and Change In order to achieve the AIPS change and growth

goals, the software design should adhere to the following guidelines:

(1) The data structures that represent the physical characteristics of

the system should be designed such that the addition of hardware,

e.g., nodes, computer, or I/0 devices, will not necessitate the

reprogramming of software modules that assign or reference the
structures.

(2) The above guideline should also be adhered to regarding the number

of application functions the system is prepared to handle.

(3) The software design should adhere to a name scoping policy that

avoids the problems of duplicate names arising when a new software
function is added.

(4) It should be possible to treat the software for each computer as a

separate entity from the link and load point of view. That is, a

change in a software module that will execute on one computer

should not necessitate a recompilation and relink of the software

for another computer.

(5) The software protocols used for interfunction communication,

intercomputer communication, and for sensor/effector I/0 should be

logically -separated from the hardware protocols employed on the

various communication media. This wi]l insulate the software from

changes in the hardware system.

Adherence to the above guidelines will require special attention on the

part of both system software and application software designers and i_ple-
menters. In particular:

Present and added users of I/0 devices on the shared buses (global and
regional) must be prepared to accept some delays due to both:

(I) contention over use of the bus by two or more computers, and

(2) queueing delays due to requests to use the same device concurrent-

ly (for devices that must be 'locked' for more than one bus trans-

mission duration).

Guideline number (4) above will necessitate special care in the case

of software for migratable functions. This software will exist in the

link set (build) for each of the potential host computers. A change

in such software must be followed by a relink of each host computer's

software in order to effect the change in all potential execution

sites. This reIink of each affected GPC's software should be inforced

by the software configuration management system.

3.5.2.1.5 Fault Tolerance The AIPS software system shall not disallow the

use of various fault tolerant software approaches. The choice of which

approach (or approaches) to utilize will be made by each application.

Three well known techniques are the Recovery Block, the N-Version and the

Backup Software approaches.

96

3.5.2.1.5.1 Recovery B]ock In this approach, there exists an ordered list

of alternative imp]ementations of the program. After the first (primary)

alternative is executed an acceptance test is performed to determine the

"appropriateness" of the output. If the test is successful, the output is
used and no further alternatives are executed. If the test is unsuccess-

fu], the next alternative is executed. If a]] alternatives have been exe-

cuted without success, the recovery block terminates with an error code.

3.5.2.1.5.2 N Version In this approach, all alternative versions of the

program are executed. When all versions have completed, a selection proc-
ess determines the most appropriate output. This approach can be inte-

grated with N-version hardware to provide for both hardware and software
fault tolerance.

3.5.2.1.5.3 Backup Software In this approach, a separate backup version of
the software is maintained in the event that an emergency situation makes

execution of the primary version untenable. Once control is passed to the
backup software, it retains control until remedial action is taken to cor-

rect the primary version. Typically, the backup software provides only
those functions essential to safe operation. The function migration capa-

bility supports this approach by permitting the transfer of operation from

one computing site to another which may host an alternate implementation
of the function.

3.5.2.1.6 Testability The AIPS system software shall incorporate features

to enhance the testability of the hardware and software.

3.5.2.1.6.1 Fault Logging The software shall record the occurrence of all
detected hardware and software faults. The record shall identify the
fault and the time of its occurrence.

3.5.2.1.6.2 Resource Utilization The system element operating systems

shall monitor and record the usage duty cycle of their respective hardware

resources. The primary purpose for this requirement is the analysis of

system performance and the identification of throughput bottlenecks.

3.5.2.1.6.3 Operating System Entry Trace Each operating system will be

capable of recording a chronological history of invoked entry points. The

history trace will identify the operating system entry point, the time of
the entry, and an identification of the invoking process. Certain soft-

ware and hardware errors will cause the recording of the trace to stop. In

addition, the operator will be able to start and stop the trace. Each

GPC's history trace will be separately controlled.

3.5.2.1.7 System Initialization and Restart The system software will sup-
port the startup of the hardware elements in both their nominal, error

free state as well as in most possible error conditions. The particular

requirements follow.

The system software shall support any power up sequence of AIPS
hardware elements.

The AIPS design philosophy relies on fault tolerant system ele-

ments, To be consistent with this philosophy, the power generation

97

and distribution system should also be fault tolerant and provide

protection against power transients. This implies that power

transient restart protection is not required in the AIPS software.

However, such protection can be provided on an application specif-

ic basis.

Power transient restart protection is not required for the Proof-

of-Concept system.

3.5.2.2 Modes of Operation The AIPS system software operating modes are a

composite of the modes of the devices (computers and gateways) that are

functioning subscribers on the Intercomputer (IC) network. These modes

are not dependent on the modes of operation of the app]ication software.

The system software operating modes of the subscribers are:

(I) Startup and Initialization

(2) Normal

(3) Reconfiguration

(4) Fault Processing

(5) Test

These modes are not necessarily mutually exclusive, even within a single

subscriber. For examp]e, a uniprocessor could be reconfiguring one I/0

network while simultaneously operating normally on another.

These modes are described in the following sections.

3.5.2.2.1Startup and Initialization The startup and initialization mode

includes the activities that the subscribers perform in the course of

achieving a normal operating state. These activities are de]ineated in

the following nominal startup sequence. Upon turn on, an IC network sub-

scriber (computer or gateway) will do the following:

(I) perform internal initialization

(2) connect itself to its loca] I/0 network (if any)

(3) connect itse]f to the IC network

(4) wait to receive a poll request that will allow it to inform the

global of its status

If the computer is the designated global computer it will:

(1) determine the status of the global I/0 network and establish a con-

nection to all devices on the global I/0 network

(2) determine the status of these I/0 devices

98

(3) repeat the previous two steps for any regional I/0 bus it is con-
nected to

(4) set a value of system time

(5) determine the status of the IC network and establish the network so

that it allows connection of all possible subscribers

(6) initiate the periodic poll of subscribers in order to establish

their states - the global will accept as a member of the function-

ing set of subscribers any subscriber that responds to its poll

message with a message that indicates that the subscriber is in

functioning order

(7) from the set of functioning subscribers, the global will select a

manager for each of the regional I/0 networks

When a computer is established as a member of the functioning set it will

complete its initialization:

(]) align its clock to the system time sent by the global

(2) connect itself to the global I/0 network

(3) if the computer is a designate_ manager of a regiona] I/0 network,

it will establish that network

(a) connect itself to the regional I/0 network

(b) determine the status of the network and establish a connection

to each I/0 device

(c) determine the status of each I/0 device

(4) a computer that is not the manager for a regional network will con-

nect to that network when it receives a permission message from the

manager

A gateway completes its initialization by responding to the system poll
message that it is capable of sending and receiving messages.

3.5.2.2.2 Normal The norma7 mode is the usual operating state - no Fault

processing is occurring nor is any reconfiguration, although self tests

that are routinely executed are included. Two types of periodic messages

are exchanged between the global computer and other IC network subscribers
during normal processing:

(l) System Time Message

(2) Status Poll

The system time message is a broadcast transmission by the global comput-

er. Each subscriber dedrifts its internal clocks with respect to the time

99

value contained in the message. There is no explicit response to this
message.

The status poll is a individual global to nonglobal subscriber trans-
mission that includes an explicit response by the subscriber. The lack of

a response indicates that the subscriber is off or otherwise isolated from
the IC network. The subscriber response includes all the information the

global computer requires to perform its system wide configuration manage-

ment tasks. In addition, if the subscriber is a gateway, the response

indicates whether or not a message from an adjoining network is pending.

3.5.2.2.3 Reconfiguration The reconfiguration mode includes the oper-

ations entailed in reconfigUring the system or system element. Reconfig-
uration is performed for a number of purposes such as:

spare cycling

restoration of fault free operation

function migration

fault identification

3.5.2.2.4 Fault Processing The fault processing mode is the operating

state when a fault in a system element is being detected or logged. This
includes the handling of software errors and exceptions.

J.5.2.2.5 Test The test mode i_ the operating state when the system ele-

ment is performing a special test of itself or one of its components.

Preflight and inflight checkout and diagnostic testing is included in this
state.

100

3.5.2.3 Specific Requirements The specific functional software require-

ments are contained in this section. They are divided into two broad cat-

egories: Local Operating System functions, and Network Operating System

functions as shown in Figure 34 on page I02.

Two local operating systems are inc]uded: a uniprocessor and a multi-

processor.

The Network Operating System categories include the intercomputer network

functions, the global I/0 network functions, the regional I/0 network

functions, and the mass memory functions.

A table of the system services that are provided vs the software functions

is presented in Table I on page 103.

101

AIPS SYSTEM ISOFTWARE

LOCAL OPERATINGSYSTEMS

NETWORK OPERATING

SYSTEMS

--_ UNIPROCESSOR

OPERAT NG SYSTEM

I MULTIPROCESSOR iOPERATING SYSTEM

"-! INTERCOMPUTERCOMMUNICATION

---_ GLOBAL I/0COMMUNICATION

---_ REGkONAL I/0COMMUNICATION

--_ MASS MEMORYCOMMUNICATION

Figure 34. Software Function Categories

102

Table 1. System Services versus Functions (Part 1 of 6)

FUNCTIONS

Local

Comp.

Mgmt.

SYSTEM SERVICES

IC

Net

Mgmt.

Non-

Local

I/0
Mgmt.

Mass

Memory

Mgmt.

Time &

File

Mgmt.

Funct.

Mgmt.

UNIPROCESSOR

OPERATING

SYSTEM

Local Init. X

Local Restart X

Scheduling X

Dispatching X

Suspension X

Termination X

lntertask
Communication X

Fault Detection X

Fault

Identification X

Reconfiguration X

Synchronization X

Local Memory Mgmt X

Memory Read X

Memory Write X

Local I/O Bus

Interface

Local I/0 Bus Mgr

Exception
Handler

X

lo3

Table 1. System Services versus Functions (Part 2 of 6)

FUNCTIONS

Local

Comp.

Mgmt.

IC

Net

Mgmt.

SYSTEM SERVICES

Non-

Local

I/0

Mgmt.

Mass

Memory

Mgmt.

Time &

File

Mgmt.

Global Time Synch X

Terminate

Function X

Transmit

Code/Data X

Migrate Function X

IC Net Interface X

Global I/0

Net Interface X

Regional I/0
Net Interface X

Normal Testing

Support

Special Testing
Support X

MULTIPROCESSOR

OPERATING

SYSTEM

Multiprocessor
Init. & Restart X

Scheduler X

Dispatcher X

Funct

Mgmt.

Local

Communication

Synchronization

10/4

Table I. System Services versus Functions (Part 3 of 6)

FUNCTIONS

Fault

Detection

Fault

Identification

Reconfiguration

Self Tests

Memory Management

Local

Comp.

Mgmt.

X

X

Memory Read X

Memory Write X

. Local I/0 Bus
Interface X

Local I/0 Bus

Manager X

Exception
Handler

Global Time Synch

Terminate

Function

Transmit

Code/Data

Migrate Function

IC Net Interface

Global I/O Net

interface

X

IC

Net

Mgmt.

SYSTEM SERVICES

Non-

Local

I/0
Mgmt.

Mass

Memory

Mgmt.

Time &

File

Mgmt.

Funct.

Mgmt.

1o5

Table 1. System Services versus Functions (Part 4 of 6)

FUNCTIONS

Local

Comp.

Mgmt.

IC

Net

Mgmt.

SYSTEM SERVICES

Non-

Local

I/0

Mgmt.

Regional I/0 Net
interface X

Normal Testing

Support X

Special Testing

Support

Mass

Memory

Mgmt.

Time &

File

Mgmt.

Funct.

Mgmt.

NETWORK

OPERATING

SYSTEM

IC net fault

identification X

Subscriber Poll

Response X

IC Net Init. X

Context Manager X

Reconfigure
iC Net X

IC Net

Communication X

IC Net Manager X

Initial Program
Load X

Applications

Program Load X

Periodic

Subscriber Poll X

106

Table I. SystemServices versus Functions (Part 5 of 6)

FUNCTIONS

Function

Migration

Broadcast

System Time
t

Set System Time

System Time
Source FDIR

Signal Message
Failure

Initialize Global

I/O Device

Local

Comp.

Mgmt.

IC

Net

Mgmt-.

X

TransmitTo

Global I/O Device X.

Manage Contention

For Global I/0 X

Reconflgure

Global I/O Net X

Check Status Of

Global I/O Net

Check Idle Global

I/O Device

SYSTEM SERVICES

Non-

LocaI

I/O

Mgmt.

Mass

Memory

Mgmt.

X

Signal Message
Failure X

Initialize

Regional Net X

Initialize

Regional Device X

Time &

File

Mgmt.

X

X

,.

X

Funct.

Mgmt.

I07

Table I. System Services versus Functions (Part 6 of 6)

FUNCTIONS

Transmit To

Regional Device

ManageContention

For Regional I/0

Reconfigure

Regional I/0 Net

Check Status Of

Regional I/O

Check Idle

Regional Device

Loc a I

Comp.

Mgmt.

IC

Net

-Mgmt.

SYSTEM SERVICES

Non-

Local

I/0

Mgmt.

X

X

X

Mass

Memory
Mgmt.

X

File Management X X

MassMemory
Read .And Write

Time &

File

Mgmt.

Funct.

Mgmt.

108

3.5.2.3.1 Local Operating Systems The local operating systems of the

general purpose computers (uniprocessor and multiprocessor) provide the

services discussed in section 3.1.3.1, Local Computer Management.

3.5.2.3.1.1 Uniprocessor Operating System The uniprocessor operating
system provides the services necessary for the operation of the fault tol-

erant processor. Those services include local management functions such

as initialization and restart, local configuration management, scheduling

and dispatching tasks, and communication between tasks. It also provides

the interfaces to the network operating systems. See Figure 35 on page
110.

109

UNIPROCESSOR 1OPERATING SYSTEM

!
ILOCAL MANAGEMENT I

_l PROCESSOR
INIT AND RESTART

SCHEDULING ANDDISPATCHING

-_ INTERTASKCOMMUNICATION

FDIR

NETWORK INTERFACE I

---_SYNCH WITH GLOBAL

SYSTEM TIME

--_LOCAL SUPPORT FORFUNC MIGRATION

--_ INTERCOMPUTERINTERFACE

NETWORK I/0

INTERFACE

TESTING INTERFACE I

NORMAL ITEST SUPPORT

SPECIAL ITEST SUPPORT

PROCESSOR

SYNCHRONIZATION

--_ MEMORYMANAGEMENT

._ LOCAL I/OINTERFACE

--_LOCAL I/0 CONFIGMANAGEMENT

EXCEPTIONHANDLING

Figure 35. Uniprocessor Operating System Functions

110

3.5.2.3.1.1.1 Local Management

3.5.2.3.1.1.1.1 Processor Initialization and Restart

Function Name: Local Uniprocessor Initialization

Requirements Source: CSDL

Modes in Which Function Required:

Startup

Initiation and Termination Events:

Initiation: Local power turn on, operator request

Termination: Initiation of normal/test operating mode

Functional Description of Inputs:

The inputs to this function shall include:

• initial system configuration/status tables

• initial local configuration/status tables

• initial operating system program load

• initial application program load.

Functional Description of Outputs:

The outputs from this function shall include:

• updated system configuration/status tables

• updated local configuration/status tables.

Description of Function:

This function shall be responsible for bringing a local uniprocessor GPC

from a cold startup to the normal/test operating mode and may include the

following actions:

• obtain initial operating system program load from Read Only Memory

or mass memory

• initialize local operating system database

• synchronize local redundant computational and I/0 processors

• determine status of and configure local redundant processors

• perform system startup procedures to connect with intercomputer
and shared I/0 networks

111

determine status of any memory mapped I/0 devices

initialize local I/0 bus:

determine status of local I/0 bus

if network, establish connections to each I/0 device

determine status of each I/O device

• obtain initial application program load from either

Only Memory, mass memory or another processing site,

• schedule initial applications tasks for execution.

Comments:

resident Read

The specific actions performed by this function shall be determined by the

hardware architecture of the particu]ar AIPS app]ic_tion.

112

Function Name: Local Uniprocessor Restart

Requirements Source: CSDL, AIPS-83-50

Modes in Which Function Required:

All

Initiation and Termination Events:

Initiation: Power transient, software error conditions

Termination: Resumption of normal/test operating mode

Functional Description of Inputs=

The inputs to this function shall include:

• current system conflguration/status tables

• current local configuration status tables

• current operating system program load

• current application program load

Functional Description of Outputs:

The outputs from this function shall include:

• updated system configuration/status tables

• updated local configuration/status tables.

Description of Function:

This function shall attempt to gracefully return a local uniprocessor GPC
to a normal/test operating mode following the occurrence of certain hard-

ware/software faults. The function may include the following actions:

• obtain current operating system program load from resident Read

Only Memory or mass memory

• initialize local operating system database

• synchronize loca] redundant computational and I/0 processors

• determine status of and configure loca] redundant processors

• perform system startup procedures to reconnect with intercomputer
and shared I/0 networks

reconnect with local I/0 bus

Comments:

113

The specific actions performed by this function shall be determined by the
hardware architecture of the particular AIPS application.

If, due to the occurrence of certain failure modes, the local uniprocessor

GPC is unable to gracefully execute this function, the full Local Unipro-
cessor Initializatlon function shall be initiated instead.

114

3.5.2.3.1.1.1.2 Scheduling and Dispatching

FunctionName: Task Scheduling

Requirements Source: CSDL

Modes in Which Function Required:

A11

Initiation and Termination Events:

Initiation: Task schedule call

Termination: Task ready for dispatch

Functional Description of Inputs:

The inputs to this function shall include:

• task identifier

• scheduling criteria:

priority

execution time

event identifier

• current schedu]e queues.

Functional Description of Outputs:

The outputs from this function shall include:

• updated schedule queue.

Description of Function:

This function shall schedule tasks in a multitasking environment that

shall permit both synchronous and asynchronous operation.

Tasks may be scheduled by other tasks or by the operating system (system

tasks) according to three criteria: priority, time or event occurrence.

A priority task shall be either dispatched immediately or queued as a

ready task depending on whether it has a higher or lower priority than the

currently active task.

Time dependent tasks may be either one time or cyclic. Time tasks shall
be queued according to execution time. At execution time, tasks shall be

dispatched as priority tasks with cyclic time tasks being requeued accord-

ing to the updated execution time.

I15

Event dependent tasks may be either one time or cyclic. Event tasks shall
be queued according to an event identifier (event number). Event occur-

fence shall be signalled via an operating system primitive. At event

occurrence, tasks shall be dispatched as priority tasks with cyclic event

tasks being requeued according to event number.

Comments:

None.

116

Function Name: Task Dispatching

Requirements Source: CSDL

Modes in Which Function Required:

All

Initiation and Termination Events:

Initiation: Task ready for execution
Termination: Task execution initiated

Functional Description of Inputs:

The input to this function shall include:

• current schedule queue.

Functional Description of Outputs:

The output from this function shall include:

• updated schedule queue

• task watchdog timer.

Description of Function:

Th}s task shall activate a task ready for execution. Associated with each

defined task shall be a numerical priority. Task dispatching or acti-

vation shall be priority driven with tasks ready for dispatch queued

according to priority. A task shall be activated when it is the highest

priority ready task. An active task shall be interrupted by a ready task

of higher priority. The interrupted task shall be queued according to

priority and dispatched again when it has the highest priority.

A watchdog timer shall be activated prior to task dispatching to protect

against exclusive CPU takeover by a task.

Comments:

None.

If7

Function Name: Task Suspension

Requirements Source: CSDL

Modes in Which Function Required:

All

Initiation and Termination Events:

Initiation: Task suspension call
Termination: Task reactivated

Functional Description of Inputs:

The inputs to this function shall include:

• task identifier

• task reactivation criteria:

reactivation time

event identifier

• current schedule queues.

Functional Description of Outputs:

The outputs from this function shall include:

• updated schedule queues,

Description of Function:

This function shall suspend a currently active task. Tasks may be sus-
pended (by themselves or by the operating system) pending a time delay or

an event occurrence. The suspended task shall be queued as a time or an

event task and dispatched as a priority task whenever the specified time
delay or event occurs,

Comments:

None,

]]8

Function Name: Task Termination

Requirements Source: CSDL

Modes in Which Function Required:

All

initiation and Termination Events:

Initiation: Task termination call

Termination: Task removed from schedule queues

Functional Description of Inputs:

The inputs to this function shall include:

• task identifier

• current schedule queues.

Functional Description of Outputs:

The outputs from this function shall include:

• updated schedule queues.

Description of Function:

This function shall attempt to gracefuliy terminate execution of a task.

Upon completion of normal task execution, the completed task shall be

deactivated and the highest priority ready task dispatched. A task that

has been scheduled(by priority, time or event) may be cancelled by another

task or the operating system before being dispatched. An active, inter-

rupted or suspended task shall be capable of being aborted by another task

or the operating system.

Comments:

Although task aborts shall be supported by this function, specific pro-

gramming guidelines indicating under what conditions such aborts shall be
permitted will be developed for each AIPS application.

119

3.5.2.3.1.1.1.3 Intertask Communication

Function Name: Local Intertask Communication

Requirements Source: CSDL

Modes in Which Function Required:

A11

Initiation and Termination Events:

Initiation: Software cal]

Termination: Completion of communication action

Functional Description of Inputs:

The inputs to this function may include:

• communicating task identifiers

• parameters to be passed

• pointers to shared memory areas (including mailboxes)

• current schedule queues.

Functional Description of Outputs:

The outputs from this function may include:

• parameters passed

• updated schedule queues.

Description of Function:

This function

concurrently executing tasks:

shall support the following types of communication between

The execution of all or part of a task is

dependent on the execution of all or part of
another task.

Task synchronization

Parameter passing

Shared data lockout

Conwnents :

Required parameters are passed back and forth
between tasks.

Access to a set of shared data is restricted

to one task at a time.

None.

120

3.5.2.3.1.1.1.4 eOIR

Function Name: Fault Detection

Requirements Source: CSDL, AIPS-83-50

Modes in Which Function Required:

All

Initiation and Termination Events:

Initiation: Computer turn on

½ermination: Computer turn off

Functional Description of Inputs:

The inputs to this function shall include:

• CPU, memory and data exchange hardware self test results

• hardware error latch registers

• normal I/O data.

Functional Description of Outputs:

The outputs from this function shall include:

• hardware error latch registers.

Description of Function:

This function shall detect hardware faults within redundant channels of

the Fault Tolerant Processor by periodic exchange of data between the

cross strapped computationa] and I/O processors. Data exchanged may

include results of CPU, memory and data exchange hardware self test rou-

tines, hardware error latch registers and, in the case of I/O processors,

I/O data during normal voting and source congruency exchanges. Data mis-

compares will be indicated in hardware error latches and shall represent a
detected fault. For a simplex processor, fault detection shall be

attempted via background self test routines.

Comments:

Fault detection through data comparison requires redundant processor exe-

cution in a tightly coupled, instruction synchronized mode.

121

Function Name: Fault Identification

Requirements Source: CSDL, AIPS-83-50

Modes in Which Function Required:

Fault Processing

Initiation and Termination Events:

Initiation: Detection of fault

Termination: Identification of fault

Functional Description of Inputs:

°

The inputs to this function shall include:

• hardware error latch registers.

Functional Description of Outputs:

The outputs from this function shall include:

• fault identification indicator.

Description of Function:

This function shall identify hardware faults within redundant channels by

periodic software analysis of exchanged hardware error latch registers.

Identification shall be attempted as to location and duration ('soft' or

transient, 'hard'). The occurrence of a predetermined number of transient

or 'soft' faults within a fixed time interval shall be considered a 'hard'

fault. Fault identification in a simplex processor shall be attempted by

analysis of self test results.

Con_ents:

None.

122

Function Name: Processor Reconfiguration

Requirements Source: CSDL, AIPS-83-50

Modes in Which Function Required:

Startup

Reconfiguration

initiation and Termination Events:

Initiation: Fault identification

Termination: Processor reconfiguration completed

Functional Description of inputs:

The inputs to this function shall include:

• fault identification indicator

• current]ocal configuration/status tables.

Functional Description of Outputs:

The outputs from this function shall include:

• updated local configuration/status tables

• processor mask registers

• updated status message to global computer.

• updated fault log.

Description of Function:

This function shall reconfigure the Fault Tolerant Processor(FTP) upon

identification of a detected fault. Successful identification of a faulty

component in a redundant FTP channel shall result in the effected compo-
nent being masked out of any further FTP activities (data exchanges, vot-

ing, I/0 etc.). Due to the cross strapping of processors, the failure of
one component shall not necessarily result in the loss of the entire chan-

nel; e.g. a failed computational processor shall not result in the masking
of its corresponding I/O processor's I/O activity.

Periodically a faulty component shall be tested to determine if the fault

is persisting. Reconfiguring a previously faulty component on line shall

be attempted after fault free operation for a predetermined time interval.

Reconfiguration shall be prohibited in the case of unsuccessful fault

identification in a duplex or simplex processor. The global computer

shall be notified of the unreliability of the processor's output.

123

All faults detected and changes of processor status shall be logged for

transmission to the global computer for possible system function

migration.

Comments:

Depending on the redundancy requirements of the particu|ar functions

being implemented at a specific FTP processing site, termination of task

execution may be required upon reconfiguration.

124

3.5.2.3.1.1.1.5 Processor Synchronization

Function Name: Processor Synchronization

Requirements Source: CSDL

Modes in Which Function Required:

Al1

Initiation and Termination Events:

Initiation: power turn on, periodic demand

Termination: redundant processors synchronized

Functional Description of Inputs:

The inputs to this function shall include:

• initial local configuration/status tables.

Functional Description of Outputs:

The outputs from this function shall include:

• updated local configuration/status tables.

Description of Function:

This function sha]l tightly synchronize the redundant processors (compu-

tational and I/O) in a Fault Tolerant Processor to the instruction level.

Synchronization shall be accomplished utilizing the data exchange cross

strapping between redundant processors. Failure of a processor to achieve
synchronization with its neighbor(s) shall be interpreted as a fault in

the indicated processor with resultant downgrading of that processing
site's redundancy level.

Synchronization shall be attempted at power on ('cold' start) and at peri-

odic intervals to ensure continued synchronization and to attempt recap-

ture of any 'lost' processor(s).

Comments:

None.

]25

3.5.2.3.1.1.1.6 Memory Management

Function Name: Local Memory Management

Requirements Source: CSDL

Modes in Which Function Required:

All

Initiation and Termination Events:

Initiation: Task initiation, user request

Termination: Task completion, user request

Functional Description of Inputs:

The inputs to this function shall include:

• memory allocation request

• pointer to available memory storage area.

Functional Description of Outputs:

The outPUtS from this function shall include:

• .updated pointer to available memory storage area

• _oftware exception.

Description of Function:

This function shall dynamicai]y allocate and deallocate]ocal

executing tasks. A software exception shall be raised if

memory a]location exceeds the available storage size,

Comments:

None.

memory for

the required

126

Function Name: Uniprocessor Memory Read

Requirements Source: CSDL

Modes in Which Function Required:

Normal

Initiation and Termination Events:

Initiation: on demand

Functlonal Description of Inputs=

The inputs to this function are the addresses of the local memory
locations to be read.

Functional Description of Outputs=

The outputs of this function are the contents of the local memory
locations.

Description of Function:

This function responds to a request for the value of the contents of spec-

ified local memory locations.

Comments:

None,

127

Function Name: Uniprocessor MemoryWrite

Requirements Source: CSDL

Modes in Which Function Required:

Normal

initiation and Termination Events:

Inltiation: on demand

Functional Description of Inputs:

The inputs to this function are the addresses of the local memory
locations to be written into and the values to be stored,

Functional Description of Outputs:

The outputs of this function are the altered contents of the local memory
locations.

Description of Function:

This function responds to a request to alter the contents of specified
toca] memory locations.

Comments:

None.

128

3.5.2.3.1.1.1.7 Local I/0 Interface

Function Name: Local I/0 Bus Interface

Requirements Source: CSDL

Modes in Which Function Required:

All

Initiation and Termination Events:

Initiation: On demand

Termination: Local I/0 bus transaction completed

Functional Description of Inputs:

The inputs to this function shall include:

• formatted command/data message for local I/0 device.

Functional Description of Outputs:

The outputs from this function shall include:

• response from local I/0 device

transaction status.

Description of Function:

This function shall transmit messages to and receive responses from local

I/0 devices as a service for the local I/0 bus manager of the local oper-

ating system. Source congruency shall be applied to messages prior to
transmission and to responses after receipt. Upon completion, the status
of the transaction shall be returned to the local I/0 bus manager.

Comments:

None.

129

3.5.2.3.1.1.1.8 Local I/0 Configuration Management

Function Name: Local I/0 Bus Manager

Requirements Source: CSDL

Modes in Which Function Required:

All

Initiation and Termination Events:

Initiation: Computer turn on

Termination: Computer turn off

Functional Description of Inputs:

The inputs to this function shall include:

• current local I/O bus configuration/status tables

• commands/data for I/0 device on local I/0 bus.

Functional Description of Outputs:

The outputs from this function shall include:

• updated local I/0 bus configuration/status tables

• reconfiguration commands to the local IjO bus(if a network)

• data from I/0 device on]oca] 1/0 bus.

Description of Function:

This function shall be responsible for:

• servicing requests for initiating transactions to]ocal I/0
devices

servicing responses from local I/0 devices

resolving contentions for local I/0 devices

detection of faulty I/0 devices

in the case of a local t/0 network, detection of node/link faults,

network reconfiguration and periodic incorporation of inactive
links.

Comments:

None.

13o

3,5,2.3.1.1.1.9 Software Exception Handler

Function Name: Local Operating System Software Exception Handler

Requirements Source: CSDL

Modes in Which Function Required:

All

Initiation and Termination Events:

#nitlation: Detection of software exception.

Termination: Return to application task.

Functiona] Description of Inputs:

The inputs to this function shal] include:

• exception identifier

• error log

• task identifier

Functional Description of Outputs:

The outputs from this function shal] include=

• updated error]og

Description of Function=

Upon a software exception, this function shaI} log the
return to the application specified software error handler.

application specified error handler, the function will
error fix up.

Comments:

None.

exception and
If there is no

perform a standard

131

3.5.2.3.1.1.2 System Interfaces

3.5.2.3.1.1.2.1 Synchronization with Global System Time

Function Name: Global Time Synchronization

Requirements Source: CSDL, AIPS-83-50

Modes in Which Function Required:

All

Initiation and Termination Events:

Initiation: Receipt of system time message

Termination: Local time synchronized with system time

Functiona] Description of Inputs:

The inputs to this function shall include:

• system Lime message from global computer.

Functional Description of Outputs:

The outputs from this function shall include:

• updated local Lime value

• Lime drift correction.

Description of Function:

This function sha]l synchronize local processor time with the broadcast

system time. Upon receipt of the periodic system time message from the

global computer, the enclosed Lime value will be compensated by known
biases and the resultant value used to dedrift the local Lime.

Comments:

None.

132

o

3.5.2.3.1.1.2.2 Local Support for Function Migration

Function Name: Terminate Function Execution

Requirements Source: CSDL, AIPS-83-50

Modes in Which Function Required:

Reconfiguration

Initiation and Termination Events:

initiation: Command from global computer to terminate function
Termination: Function execution terminated

Functional Description of Inputs:

The inputs to this function shall include:

• message from global computer to terminate specified function.

Functional Description of Outputs:

The outputs from this function shall include:

• message to global computer indicating termination status

• updated local schedule queues.

Description of Function:

Upon command of the global computer, an attempt shall be made to 'grace-

fully' abort a currently executing function at an application specified

checkpoint. If a checkpoint is not reached within a predetermined time

interval, the function shall be terminated immediately. All open data

files shall be closed and any locked data shall be unlocked. All tasks

relating to the terminated function shall be deleted from the local system

queues. A terminated function shall be allowed to execute again at this

processing site only when it has been reactivated by the global computer

(e.g.as a result of a future function migration). The status of the func-

tion termination shall be transmitted to the global computer.

Comments:

None.

133

Function Name: Transmit Code/Data

Requirements Source: CSDL, AIPS-83-50

Modes in Which Function Required:

Reconfiguration

Initiation and Termination Events:

Initiation: Receipt of code/data transmission request
Termination: Code/data transmitted

Functional Description of Inputs:

The inputs to this function shall include:

• transmission request containing:

code/data identifier

destination processing site identifier.

Functional Description of Outputs:

The outputs from this function shall include:

• message to destination processing site containing
code/data.

Description of Function:

required

Upon receipt of the code/data transmission request, the indicated

code/data (including checkpoint data) resident at this processing site

shall be transferred to the destination processing site. Transmission may

be to mass memory to be retrieved by the destination processing site or,

alternately, over the intercomputer network directly to the destination
site.

Comments:

None.

134

Function Name: Migrate Function

Requirements Source: CSDL, AIPS-83-50

Modes in Which Function Required:

Reconfiguration

Initiation and Termination Events:

Initiation: Function migrate command from global computer

Termination: Function migrated and activated

Functional Description of Inputs:

The inputs to this function may include:

• function migrate message from global computer including:

function identifier

code/data source identifier

• message from source processing site containing required function
code/data

•]oca] schedule queues.

Functional Description of Outputs;

The outputs from this function may include:

• code/data transmission request to source processing site includ-

ing:

function code/data identifier

destination processing site identifier

• message to global computer giving status of function migration

• updated local schedule queues.

Description of Function=

Upon receipt of the function migrate command from the global computer, the
indicated function's code/data shall be obtained from mass memory direct-

ly or from another processing site utilizing the intercomputer network or

mass memory. In either case, the received code/data shall be prepared for

execution/use at this processing site (virtual memory page registers ini-

tialized etc.).

135

°

The indicated function shall be scheduled for execution and activated at

its initial start address or at a restart checkpoint, The status of the

function migration and activation shall be reported to the global comput-

er.

Co_.ents:

NoRe.

136

3.5.2.3.1.1.2.3 Intercomputer Interface

Function Name: Intercomputer(IC) Network Interface

Requirements Source: CSDL

Modes in Which Function Required:

All

Initiation and Termlnation Events:

Initiation: On demand

Termination: IC network transaction completed

Functional Description of Inputs:

The inputs to this function shall include:

• formatted message for transmission on IC network.

Functional Description of Outputs:

The outputs from this function shall include:

• formatted message received from IC network

e IC transaction status.

Description of Function:

This function shall transmit and receive messages from the IC network as a

service for the IC network funct{ons of the network operating system.

Output messages on redundant channels shall be voted in hardware prior to
transmission. The status of input messages shall be determined from hard-

ware error latches and the results passed along to the user IC network
function.

Comments:

None.

137

3.5.2.3.1.1.2.4 Network 1/0 Interface

Function Name: Global I/0 Network Interface

Requirements Source: CSDL

Modes in Which Function Required=

All

Initiation and Termination Events:

Initiation: On demand

Termination: Global I/0 network transaction completed

Functional Description of Inputs=

The inputs to this function shall include:

• formatted command/data message for global I/0 device.

Functional Description of Outputs:

The outputs from this function shall include:

• response from global I/0 device

• transaction status.

Description of Function=

This function shall transmit messages to and receive responses from global
I/0 devices as a service for the global I/0 network functions of the net-

work operating system. Source congruency shall be applied to messages
prior to transmission and to responses after receipt. Upon completion,

the status of the transaction shatl be returned to the global I/O network
function,

Comments=

None.

138

Function Name: Regional I/0 Network Interface

Requirements Source: CSDL

Modes in Which Function Required:

All

Initiation and Termination Events:

Initiation: On demand

Termination: Regional I/0 network transaction completed

Functional Description of Inputs:

The inputs to this function shall include:

• formatted command/data message for regional I/0 device.

Functional Description of Outputs:

The outputs from this function shall include:

• response from regional I/0 device

• transaction status.

Description of Function:

This function shall transmit messages to and receive responses from

regional I/0 devices as a service for the regional I/0 network functions

of the network operating system. Source congruency shall be applied to

messages prior to transmission and to responses after receipt. Upon com-
pletion, the status of the transaction shall be returned to the regional
I/O network function.

Comments:

None.

139

3.5.2.3.1.1.3 Testing Interfaces

3.5.2.3.1.1.3.1 Normal Test support

Function Name: NormalTest Support

RequirementsSource: CSDL

Modes-in Which Function Required:

Norma!

Initiation and Termination Events:

Initiation: GPC startup
Termination: GPC shutdown

Functional Description of Inputs:

The inputs to this function i_clude Faults to be logged, operating system
entry identifiers, and watchdog timer update commands.

Functional Description of Outputs:

The outPUtS of this function.is the specified action.

Description of Function:

This function provides the normal testing support for the processor. These
functions include: the logglng of all hardware and software faults, the

maintenence of an operating entry trace, and the maintenence of a watchdog
timer.

Comments:

None.

140

3.5.2.3.1.1.3.2 Special Test support

Function Name: Special Test Support

Requirements Source: CSDL

Modes in Which Function Required:

All

Initiation and Termination Events:

Initiation: GPC startup

Termination: GPC shutdown

Functional Description of Inputs:

The inputs to this function include processor halt commands, and commands
to s{mulate faults.

Functional Description of Outputs:

The outputs of this function _s the specified action.

Description of Function:

This function provides the special testing support for the processor.

These functions include halting the processor upon the detection of speci-
fied conditions and simulating specified faults for special testing oper-
ations.

Comments:

None.

141

3.5.2.3.1.2 Multiprocessor Operating System The multiprocessor operating

system provides the services necessary for the operation of the fault tol-
erant mu)tiprocessor. Those services include local management functions

such as initialization and restart, local configuration management, sche-

duling and dispatching tasks, and communication between tasks. It also

provides the interfaces to the network operating systems. See Figure 36

on page 143.

142

MULTIPROCESSOR

OPERATING SYSTEM

I
ILOCAL MANAGEMENTI

PROCESSOR

INIT AND RESTART

SCHEDULING AND

DISPATCHING

INTERTASK

COMMUNICATION

PROCESSOR ISYNCHRONIZATION

FDIR I_

NETWORK INTERFACE I

---_SYNCH WITH GLOBAL

SYSTEM TIME I

---_LOCAL SUPPORT FOR I

FUNC MIGRATION I

--i INTERCOMPUTER IINTERFACE

_I NETWORK I/0INTERFACE

I
TESTING INTERFACE

NORMAL

TEST SUPPORT

SPECIAL

TEST SUPPORT

MEMORY IMANAGEMENT

---1 LOCAL I/O IINTERFACE

--_LOCAL I/0 CONFIG IMANAGEMENT

EXCEPTIONHANDLING

Figure 36. Multiprocessor Operating System Functions

t43

3.5.2.3.1.2.1 Local Management

3.5.2.3.1.2.1.1 Processor Initialization and Restart

Function Name: Multiprocessor Initialization and Restart

Requirements Source: CSDL

Modes in Which Function Required:

Startup,Restart

Initiation and Termination Events:

Initiation: Multiprocessor Startup
Termination: Muitiprocessor Configuration Complete

Functional Description of Inputs:

The inputs to this function include AIPS system configuration tables and

local system configuration tables.

Functional Description of Outputs:

The outputs of this function include updated AIPS system configuration
tables and undated local system configuration tables.

Description of Function:

This function performs two services: one, to bootstrap the system initial-

ly, also called the "cold start"; and two, to restart the system after a
power interruption, also called the "hot start".
Cold start, In the case of the cold start, neither the local system memo-

ry nor the control registers will contain useful information. The system

memory will be bootstrapped from mass memory, or another external device.
The muitiprocessor system configuration tables and the local copy of the

AIPS system configuration tables in the multiprocessor's shared memory
will be initialized and the rest of the system start functions will be the
same as in the hot start.

Hot start. The multiprocessor system will be restarted in the case of a

power failure. The system memory and the system control unit registers
shall be non volatile. Cache RAM will be volatile. The function may per-

form the following restart actions:

• Reset hardware control registers

• Clear interval timers

• Clear all interrupts

• Initialize cache RAM

• Synchronize with other members of triad

144

• Read local system configuration tables

• Bring the multlprocessor system to system configuration:

including configuring memory, processors, buses, clocks, and

local I/0 network

• Read AIPS system configuration tables

• Perform procedures to connect with IC and shared I/O networks

Comments:

The restart function should reside in non volatile PROM,

I_5

3.5.2.3. I .2. I .2 Schedul ing

Function Name: Muitiprocessor Scheduler

Requirements Source: CSDL

Hodes in Which Function Required:

All

Initiation and Termination Events:

Initiation: Operating system, application task schedule call

Termination: Task is placed on appropriate queue

Functional Description of Inputs:

The inputs to this function include the task identification, queues, pri-
ority of the task, event occurrence, and the time to schedule.

Functional Description of Outputs:

The outputs include a signal to another active triad to schedule the next

time dependent task, an updated ready queue and activation of the dis-

patcher.

Description of Function:

The operating system shall manage task execution iqa multiprogram multi-

processor environment. All parts of the multiprocessor operating system
shall be able to run on any of the active processor triads.

Time dependent tasks may be either one time or cyclic. Time tasks shall
be queued according to execution time. At execution time, tasks shall be

put on the ready queue and dispatched according to priority. Time depend-
ent tasks may be scheduled by any of the active triads. If more than one
triad is active at scheduling time, the responsible triad will kick anoth-

er active triad to be responsible for scheduling the next task in the time

dependent queue. Cyclic time tasks will be requeued according to time to
schedule.

Event dependent tasks may be either one time or cyclic. They shall be

queued in order of an event identifier. At event occurrence, the task

shall be scheduled by the triad that sees the event first. Cyclic event
tasks shal] be requeued in order of event number.

A priority task shall be either dispatched immediately or queued as a

ready task depending on whether it has a higher priority than any of the

tasks presently running. If it has a higher priority, the task with the

least priority of the active tasks shall be interrupted.

146

Comments:

None.

147

3.5.2.3.1.2.1.3 Dispatching

Function Name: Hultiprocessor Dispatcher

Requirements Source: CSDL

Modes in Which Function Required:

All

Initiation and Termination Events:

Initiation: Scheduler, Task completion signal

Termination: Context switch completed

Functional Description of Inputs:

The inputs to this function include the priority of the task to be dis-

patched, the appropriate pointers to that task and the task to be inter-

rupted.

Functional Description of Outputs:

The outputs include appropriate pointers to an interrupted task, updated

queues and a task watchdog timer.

Description of Function:

Associated with each defined task shall be a numerical priority. Task dis-

patching or activation shall be priority driven with tasks ready for dis-

patch being queued according to priority. A task shall be activated when
it is the highest priority ready task. An active task shall be inter-

rupted by a ready task of higher priority. Of the active tasks running,
the one with the least priority shall be the interrupted one. The inter-

rupted task shall be queued according to priority and dispatched again
when it has the highest priority.

The dispatcher task shall run on any of the active processor triads. It

will be activated by the scheduler whenever a task is scheduled that has a

higher priority than any presently running. It will also be activated when

any presently running task reaches normal completion.

A watchdog timer for each triad processor shall be activated at task dis-

patch time to protect against CPU takeover by an application task.

Comments:

None.

148

3.5.2.3.1.2.1.4 Local Intertask Communication

Function Name: Muitiprocessor Local Communication

Requirements Source: CSDL

Modes in Which Function Required:

All

Initiation and Termination Events:

Initiation: Operating system activation

Termination: Communication completed

Functional Description of Inputs:

The inputs to this function may inc)ude pointer to parameters to be

passed, pointers to shared memory (mailboxes), communicating task identi-

fier.

Functional Description of Outputs:

The outputs of this function may include parameters passed, and messages
to other triads.

Description of Function:

Intertask Communication. This "function shall support the following types

of communication between tasks running on the same processor triad and/or

tasks running on different processor triads:

Task synchronization The execution of a11 or part of a task is

dependent on the execution all or part of

another task.

Parameter passing Required parameters are passed back and forth
between tasks.

Shared memory lockout A task will be allowed to lock portions of
the multiprocessor's shared memory.

Operating System Communication. The multiprocessor operating system

shall be able to directly communicate to an active processor triad by

means of hardware IPC (interprocessor triad communication) registers.

Writing to these registers can cause an IPC interrupt. There will be an

IPC interrupt handler whose function it is to interrupt the task presently

running in that triad, interpret the communication from the operating sys-

tem, and take the appropriate action.

Comments:

None.

149

3.5.2.3.1.2.1.5 Processor Synchronization

Function Name: Synchronization

Requirements Source: CSDL

Modes in Which Function Required:

Startup

Fault Processing

Reconfiguration

Initiation and Termination Events:

Initiation: call by restart or reconfiguration function
Termination: triad is synchronized

Functional Description of Inputs:

Functional Description of Outputs:

Description of Function:

In order for the multiprocessor to maintain the appropriate level of reli-

ability, the CPs and IOPs of the system must form triads that work togeth-

er in tight synchronism. This function will synchronize the processors.

• °

This function will be called by the restart function and the reconfigura-

tion function of the multiprocessor operating system,

Comments:

None,

150

3.5.2.3.1.2.l.6 FDIR

Multiprocessor Configuration Control

The overall function of the multiprocessor configuration controller shall

be to maintain multiprocessor system integrity in the presence of hardware

faults. It will do this by detecting faults, identifying the faulty units,
and replacing them with spares or gracefully degrading the multiprocessor

system if no spares are available. Both hard and transient faults shall

be handled by the configuration controller. Spare units will be period-
ically brought on line. This will include processors, memory units, and

clock elements. Spare processor and memory units will be assigned to sha-

dow active processor and memory triads to minimize reconfiguration time.

In addition, self test programs will be run continually on active elements
to uncover any latent faults.

Function Name: Muitiprocessor Fault Detection

Requirements Source: CSDL

Nodes in Which Function Required:

All

initiation and Termination Events:

Initiation: a cyclic time task, scheduled by operating system
Termination:

Functional Description of Inputs:

Hardware error latches

Functional Description of Outputs:

Faulty unit, error latches cleared

Description of Function:

Fault detection in the multiprocessor will be done by hardware majority
voting and subsequent disagreement detection between the majority vo_er

output and each of the three inputs. The disagreements will be stored in

hardware registers which for clarity purposes will be referred to as error

latches in this document. The error latches will be read and the bus used

to read the latches will be examined for corruption since the latches will

be read as simplex source non voted data. If the bus reading the latches

does not pass appropriate tests it will be marked as faulty. This function

will clear the error latches after reading them. The result will be

passed to the fault identification function.

151

Comments :

None.

152

Function Name: Fault Identification

Requirements Source: CSDL

Modes in Which Function Required:

Fault Processing

Reconfiguration

Initiation and Termination Events_

Initiation: Fault detection function call

Termination: Faulty unit identified

Functional Description of Inputs:

faulty unit, local system configuration tables

Functional Description of Outputs:

Identity of faulty unit

Description of Function:

This function will identify the fau]ty unit using the output of the fault

detection function and the]ocal system configuration tables. It will call
the reconfiguration function to determine if the fault is a hard or a
transient fault.

Comments:

None.

153

Function Name= Reconfiguration

Requirements Source: CSDL

Modes in Which Function Required:

Reconfiguration

Initiation and Termination Events:

Initiation: One of the six events occur that are listed below.

Termination: Reconfigured system

Functional Description of Inputs:

The inputs to this include the reason for reconfiguration, the local sys-

tem configuration tables, the faulty unit.

Functional Description of Outputs:

Updated 1oeal system configuration tables

Description of Function:

The reconfiguration function must reconfigure the multiprocessor system

for the following reasons: to form a new processor triad, to assign shadow

processors or shadow memories, to cycle spares, to identify faults for the
hard fault analysis function, to deactivate an identified faulty unit.

(l) New Processor Triad Formation

When there are enough spares available to start a new processor
triad this function will start up the triad by enabling the three

processors on the appropriate buses, assign them an active identi-
fier and activate the initialization and synchronization func-

tions.

(2) Shadow Processor Assignment

This function will assign an available spare processor to 'shadow'
an active triad. The word 'shadow' in this context means that the

shadow processor will be in tight synchronization with the active
triad. It will listen to all commands on the buses and receive all

the appropriate interrupts the same as the active members. It will
not transmit on the buses. This function will find a processor tri-

ad that does not have a shadow, will pass the identifier of the

active triad to the spare processor and will activate its synchron-

ization function.

(3) Shadow Memory Assignment

This function will assign an available memory unit to 'shadow' an

active memory triad. The word 'shadow' in this context means that

the shadow memory will respond to memory write requests, but not

154

memory read requests. This function will assign the appropriate

identifier to the shadow unit, enable it on the appropriate buses

and refresh its entire memory to agree with the active memory tri-
ad.

(4) Spare Cycl ing

The spare elements in the multiprocessor, processors, memories,
buses will be periodically activated. The spare cycling function

will determine which spare units should be brought on line and do

the appropriate swapping with the active unit.

(5) Diagnostic Reconfiguration

The fault identification function will call this function to

reconfigure the system. This function will change the assignment

of the faulty unit to determine if the fault is a hard or a tran-

sient fault. The transient and hard failures will be handled as

follows.

Hard Fault Ana]ysis If the fau]t persists for several frames

after it has been reassigned, the faulty
unit will be identified for deacti-

vation. If the fault does not persist it

will analyzed by the transient fault
analysis function.

Transient Fault Analysis This function will be based on the con-

cept of 'fault index.' Each element in

the multiprocessor will be assigned a
fault index. If there is a transient

fault, the faulty unit will be assigned
demerits. The fault index will then be

recomputed every time a transient fault

occurs. If the fault index of a suspect

goes above a predetermined threshold,
the unit will be deactivated.

(6) Deactivate Faulty Unit

This function has three cases. The failed unit can be a processor,
a c]ock or a memory.

J

If the failed unit is a processor, the function must replace the

failed processor by a suitable shadow or spare. If there are no

shadows or spares, this function will retire the faulty processor

and make the remaining two good processors spares. The mu]ti-

processor system memory will be updated with the new assignments.

If the faulty unit is a memory, the function must replace the

failed memory by a suitable shadow or a spare. The muItiprocessor

system memory wi]l be updated with the new assignments.

155

If the faulty unit is a clock, the function shall replace the

failed clock with a spare clock. If there is no spare clock avail-

able then the faulty clock is disabled. The multiprocessor system

memory will be updated with the new assignments.

Comments:

None.

156

Function Name: Self Tests

Requirements Source: CSDL

Modes in Which Function Required:

All

Initiation and Termination Events:

Initiation: Multiprocessor system startup

Termination:

Functiona] Description of Inputs:

Local system configuration tables

Functional Description of Outputs:

Identity of faulty unit

Description of Function:

There will be several self tests running when there

The fo]lowing self test programs may be inc]uded:
nostlc, _ache PROM memory test, opcode diagnostic,

and error latch diagnostic.

Comments:

None.

is avaiIab]e time.

cache RAM memory diag-

interrupt diagnostic,

157

3.5.2.3.1.2.1.7 Hanagement of Dynamic Memory

Function Name: Multiprocessor Dynamic Memory Management

Requirements Source: CSDL

Modes in Which Function Required:

All

Initiation and Termination Events:

Initiation: application task request, task initialization
Termination: memory allocated

Functional Description of Inputs:

size of allocation needed, pointers to shared memory

Functional Description of Outputs:

pointers to area of shared memory allocated, software exception

Description of Function:

Each .task that can be scheduled by the multiprocessor operating system

will be assigned an area of shared memory that is used by the operating
system for task management. The amount of memory wi]l be dependant on the

number of]oca] variables, subprogram cal]s and other factors that are
determined by operating system.

The multiprocessor will have an area of shared memory that wi]] be set

aside for the system to allocate and deallocate dynamically for applica-
tion programs. This function wi]] manage that portion of shared memory by

al]ocating or dea]locating the required amount of memory to the calling
program. It will a]so raise a software exception when there is insuffi-

cient memory to perform an allocation.

Comments:

None.

158

Function Name: Multiprocessor Memory Read

Requirements Source: CSDL

Modes in Which Function Required:

Normal

Initiation and Termination Events:

Initiation= on demand

Functional Description of Inputs=

The inputs to this function are the addresses of the local memory
locations to be read.

Functional Description of Outputs:

The outputs of this function are the contents of the local memory
locations.

Description of Function:

This function responds to a request for the value of the contents of spec-

ified local memory locations.

Comments=

None.

159

Function Name: Multiprocessor Memory Write

Requirements Source: CSDL

.

Modes in Which Function Required:

Normal

Initiation and Termination Events=

Initiation: on demand

Functional Description of Inputs=

The inputs to this function are the addresses of the
locations to be written into and the values to be stored,

Functional Description of Outputs:

The outputs of this function are
locations.

Description of Function:

This function responds to a request

local memory locations.

Comments:

None.

loca] memory

the altered contents of the local memory

to alter the contents of specified

160

3.5.2.3.].2.1.8 Local I/0 interface

Function Name: Local I/0 Bus Interface

Requirements Source: CSDL

Modes in Which Function Required:

All

Initiation and Termination Events:

Initiation: On demand

Termination: Loca] I/0 bus transaction completed

Functional Description of Inputs:

The inputs to this function sha]l inc]ude:

• formatted command/data message for local /0 device.

Functional Description of Outputs:

The outputs from this function shall include:

• response from local I/0 device

• transaction status.

Description of Function:

This function shall transmit messages to and receive responses from local

I/0 devices as a service for the local I/O bus manager of the local oper-
ating system. One member of the triad processor will transmit the data.

input data will be received by all members of the triad and then written
to shared memory to insure source congruency. Upon completion, the status

of the transaction shall be returned to the 1oca] I/0 bus manager.

Comments:

None.

161

3.5.2.3.1.2.1.9 Local

Function Name: Local

Requirements Source:

I/0 Configuration Management

I/0 Bus Manager

CSDL

Modes in Which Function Required:

All

Initiation and Termination Events:

Initiation: Computer turn on

Termination: Computer turn off

Functional Description of Inputs:

The inputs to this function shall include:

• current local I/0 bus configuration/status tables

• commands/data for I/0 device on local I/0 bus.

Functional Description of Outputs:

The outputs from this function shall include:

• updated local I/0 bus configuration/s_atus tables

• reconfiguration commands to the local

• data from I/0 device on local I/0 bus.

Description of Function:

This function shall be responsible for:

• servicing requests for initiating
devices

o

I/0 bus (if a network)

transactions to local /0

servicing responses from local

resolving contentions for local

detection of faulty I/0 devices

I/0 devices

I/0 devices

in the case of a tocal I/0 network, detection of node/link faults,

network reconfiguration and periodic incorporation of inactive
links.

Comments:

None.

162

3.5.2.3.1.2.1.10 Software Exception Handler

Function Name: Local Operating System Software Exception Handler

Requirements Source= CSDL

Modes in Which Function Required:

A1]

Initiation and Termination Events:

Initiation: Detection of software exception.

Termination: Return to application task.

Functional Description of Inputs:

The inputs to this function shall include:

• exception identifier

• error log

• task identifier

Functional Description of Outputs:

The outputs fromthis function shall include:

• updated error log

Description of Function:

Upon a software exception, this function shall log the exception and
return to the application specified software error handler. If there is no

application specified error handler, the function will perform a standard

error fix up.

Comments:

None.

163

3.5.2.3.1.2.2 System Interfaces

3.5.2.3.1.2.2.1 Synchronization with Global System Time

Function Name: Global Time Synchronization

Requirements Source: CSDL

Modes in Which Function Required:

A]i

Initiation and Termination Events:

Initiation: Receipt of system time message

Termination: Local time synchronized with system time

Functional Description of Inputs: _

The inputs to this function shall include:

• system time message from global computer including:

system time value

Functional Description of Outputs:

The outputs from this function shall include:

• time drift correction.

• updated local time value.

Description of Function:

This function shall synchronize local processor time with the broadcast
system time. Upon receipt of the periodic system time message from the

global computer, the enclosed time value will be compensated by known
biases and the resultant value used to dedrift the local time.

Comments:

None.

164

3.5.2.3.1.2.2.2 Local Suppoct for Function Migration

Function Name: Terminate Function Execution

Requirements Source: CSDL,AIPS=83-50

Nodes in Which Function Required:

Reconfiguration

Initiation and Termination Events:

Initiation: Command from global computer to terminate function
Termination: Function execution terminated

Functional Description of Inputs=

The inputs to this function shall inc]ude:

• message from global computer to terminate specified function.

Functional Description of Outputs:

The outputs from this function shall include:

• message to global computer indicating termination status

• updated loca] schedu]e queues.

Description of Function:

Upon command of the global computer, an attempt shal] be made to 'grace-

fully _ abort a currently execut{ng function at an application spec{fied

check point, if a check point is not reached within a specified time

interval, the function shall be terminated immediately. All open data

files shall be closed and any locked data shall be unlocked. At! tasks

relating to the terminated function shall be deleted From the local system

queues. A terminated function sha]l be allowed to execute again at this
processing site on]y when it has been reactivated by the global computer
(e.g.as a result of a future function migration). The status of the func-

tion termination shaI] be transmitted to the globa] computer.

Comments:

None.

165

Function Name: Transmit Code/Data

Requirements Source: CSDL

Modes in Which Function Required:

Reconfiguration

Initiation and Termination Events:

Initiation: Receipt of code/data
Termination: Code/data transmitted

Functional Description of Inputs:

The inputs to this function shall include:

• transmission request containing:

code/data identifier

destination processing site identifier.

Functional Description of Outputs:

The outputs from this function shall include:

• " message to destination
code/data.

Description of Function:

transmission request

processing site containing required

Upon receipt of the code/data transmission request, the indicated

code/data (including check point data) resident at this processing site

shal] be transferred to the destination processing site. Transmission may

be to mass memory to be retrieved by the destination processing site
or,alternate]y, over the intercomputer network directly to the destina-
tion site.

Comments :

None.

166

Function Name: Migrate Function

Requirements Source: CSDL

Modes in Which Function Required:

Reconfiguration

Initiation and Termination Events:

Initiation: Function migrate command from global computer

Termination: Function migrated and activated

Functional Description of Inputs:

The inputs to this function may include:

• function migrate message from global computer including:

function identifier

code/data source identifier

• message from source process ng site containing required function
code/data

• local schedule queues.

Functional Description of Outputs:

The outputs from this function may include:

• code/data transmission request to

ing:

function code/data identifier

source processing site includ-

destination processing site identifier

• message to global computer giving status of function migration

• updated local schedule queues.

Description of Function:

Upon receipt of the function migrate command from the global computer, the

indicated function's code/data shall be obtained from mass memory direct-

]y or from another processing site utilizing the intercomputer network or

mass memory. In either case , the received code/data shall be prepared

for execution/use at this processing site (virtual memory page registers

initialized,dynamic]inker called etc.).

167

The indicated function shall be scheduled for execution and activated at

its initial start address or at a restart check point. The status of the

function mlgration and activation shall be reported to the global comput-
er.

Comments:

None.

168

3.5.2.3.1.2.2.3 Intercomputer Interface

Function Name: intercomputer(IC) Network Interface

Requirements Source: CSDL

Modes in Which Function Required:

All

Initiation and Termination Events:

initiation: On demand

Termination: IC network transaction completed

Functiona] Description of Inputs:

The inputs to this function shal] inc]ude:

• formatted message for transmission on IC network.

Functional Description of Outputs:

The outputs from this function sha]! inc]ude:

• formatted message received from IC network

• IC transaction status.

Description of Function:

This function shall transmit and receive messages from the IC network as a

service for the IC network functions of the network operating system.

Each member of the triad processor will transmit on on]y one of the redun-

dant layers of the IC network, but will listen to aI] three layers. In the

case of the receiving function, the hardware voters wi]l insure source

congruency. The status of input messages shal] be determined from hard-

ware error]atches and the resu]ts passed along to the user IC network

function.

Co_ents: ,

None.

169

3.5.2.3.1.2.2.4 Network I/0 Interface

Function Name: Global t/0 Network Interface

Requirements Source: CSDL

Hodes in Which Function Required:

All

Initiation and Termination Events:

Initiation: On demand

Termination: Global I/0 network transaction completed

Functional Description of Inputs:

The inputs to this function shall include:

• formatted command/data messages for global I/0 device

Functional Description of Outputs:

The outputs from this function shall include:

• response from global I/0 device.

• transaction status.

Description of Function:

This function shall transmit messages to and receive responses from glo-

bal I/0 devices as a service for the global I/0 network functions of the
network operating system. One member of the triad processor will transmit

the data. Input data will be received by all members of the triad and then
written to shared memory to insure source congruency. The status of the

transaction shal] be returned to the global I/0 network function.

C_Inents:

None.

170

Function Name: Regional I/O Network Interface

Requirements Source: CSDL

Modes in Which Function Required=

All

Initiation and Termination Events:

Initiation: On demand

Termination: Regional I/0 network transaction completed

Functional Description of Inputs=

The inputs to this function sha]I include:

• formatted cpmmand/data message for regional I/O device.

Functional Description of Outputs:

The outputs from this function shall include:

• response from regional I/0 device

• transaction status.

Description of Function=

This function shall transmit messages to and receive responses from

regional I/0 devices as a service for the regional I/0 network functions

of the network operating system. One member of the triad processor will
transmit the data. Input data will be received by all members of the triad

and then written to shared memory to insure source congruency. Upon com-

pletion, the status of the transaction shall be returned to the regional
I/0 network function.

Comments=

None.

171

3..5.2.3.1.2.3 Testing Interfaces

3.5.2.3.1.2.3.1 Normal Test support

Function Name: Normal Test Support

Requirements Source: CSDL

Hodes in Which Function Required:

Normal

Initiation and Termination Events:

Initiation: GPC startup
Termination: GPC shutdown

Functional Description of Inputs:

The inputs to this function include faults to be logged, operating system
entry identifiers, and watchdog timer update commands.

Functional Description of Outputs:

The outPUtS of this function is the specified action.

Description of Function:

This function provides the normal testing support for the processor. These

functions include: the logging of all hardware and software faults, the
maintenence of an operating entry trace, and the maintenence of a watchdog
timer.

Comments:

None •

172

3.5.2.3.1.2.3.2 Special Test support

Function Name: Special Test Support

Requirements Source: CSDL

Modes in Which Function Required:

All

Initiation and Termination Events:

initiation: GPC startup
Termination: GPC shutdown

Functional Description of Inputs:

The inputs to this function include processor halt commands, and commands
to simulate faults.

Functional Description of Outputs:

The outputs of this function is the specified action.

Description of Function:

This function provides the special testing support for the processor.
These functions include halting the processor upon the detection of speci-

fied conditions and simulating specified faults for special te_ting oper_
ations.

Comments:

None.

173

3.5.2.3.2 Network Operating System The Network Operating System (NOS)

provides overall management of the AIPS system, and services to support
communication and other applications needs. The following section

describes the functions which will provide the management and services.
The section is structured into four logical parts:

IC Network Functions - These functions support network services

which initialize and maintain a network of reliable computers that

communicate with each via the IC network. These functions,in gen-

eral, reside in the site designated as the Global Computer. See

Figure 37 on page 175.

Global I/O Network Functions - These functions support I/0 ser-

vices provided by the Global I/O Network. These functions,in gen-

eral, reside in the site designated as the Global Computer. See

Figure 38 on page 191.

Recional I/0 Network Functions - These functions support I/0 ser-

vices provided by the Regional I/0 Network. These functions,in

general, reside in the site designated by the Global Computer as
the Regional Manager. See Figure 39 on page 199.

Mass Memory Functions - These functions support I/O services which

support file management on the mass memory device. These functions

are, in general, distributed and are available locally. See Fig-
ure 40 on page 208.

174

3.5.2.3.2.1 Intercomputer Communication

INTERCOMPUTER

COMMUNICATION

IC NETWORK

FDIR AND

NET STATUS

CONTEXT

MANAGER

IC NETWORK

COMMUNICATION

& BUS CONTROL

IC NETWORK

TIME

MANAGEMENT

IC NETWORK

INIT AND

RESTART

IC NETWORK

RECONFIGURATION

SOFTWARE

IC NETWORK

MANAGEMENT

Figure 37. Intercomputer Communication Functions

175

3.5.2.3.2.1.11C Network FDIR and Network Status

Function Name: IC Network Fault identification

Requirements Source: CSDL

Modes in Which Function Required:

All

Initiation and Termination Events:

Initiation: System Startup
Termination: System Shutdown

Functiona| Description of Inputs:

The inputs to thls process include signals from I/0 processes indicating
errors in the network.

Functional Description of Outputs:

The output of this process is a database of what errors occurred and when,
on transactions in the IC network.

Description of Function:

This process keeps track of errors on the IC network determined by the

local II0 processes. These errors are logged in a database for use by
management processes to determine when a node or link or processor has

failed. The information logged include the type of error, the time at
which the error occurred, and the identifiers of the nodes and processors

and processes involved.

Comments:

There must be one fau]t identification process on each subscriber.

176

Function Name: Subscriber Po11 Response

Requirements Source: CSDL

Modes in Which Function Required:

All

Initiation and Termination Events:

Initiation: Upon subscriber receipt of Global Computer poll message.
Termination: Transmission successful.

Functional Description of Inputs:

Inputs to this function consist of site status and any additions to the

fault log since the last poll response.

Functional Description of Outputs:

The output of this function is a message to the Global Computer indicating

its status and any logged faults.

Description of Function:

This demand function executes in response to the poll message transmitted

to each subscriber site. The response to the Global Computer will indi-

cate the site's operational status and any faults that have occurred since

the previous poll response. The site status information includes the

state and configuration of all elements of the local site that are of con-

cern to the Global Computer functions. This includes software as well as
hardware information.

Comments:

This function resides in each processing site and must be available as
soon as each site is powered up. For gateways, a similar response sha}l

also be required.

177

3.5.2.J.2.1.2 IC Network Initialization and Restart

Function Name: IC Network Initialization

Requirements Source: CSDL

Modes in Which Function Required:

Star:up

Reconfiguration

Initiation and Termination Events:

Initiation: System Star:up or Restart

Termination: Conclusion of Initialization

Functional Description of Inputs:

The inputs to this function will be those needed to determine the state of

the network (node, link and processor status). Also needed will be a
database of initial process assignments.

Functional Description of Outputs:

The outputs of this process wil] include:

• The state of the network.

FunctionalI.y, the major output of this process is a correctly con-

figured network, with processes initialized and running.

Description of Function:

This process provides for system initlalization for the IC network. The

Globa] Computer must be identified. System time will be obtained. The IC

network will be configured and the subscribers polled to determine the
state of the system. System time wil] be broadcast to the subscribers.

Finally, the initia] function assignments will be given to the appropriate
subscribers. Each function is assumed to provide for its own initializa-
tion.

Comments:

This is a G]obal Computer process.

178

3.5.2.3.2.1.3 Context Manager

Function Name: Interfunction Communication Context Manager

Requirements Source: CSDL

Modes in Which Function Required:

All

Initiation and Termination Events:

Initiation: On Demand

Termination: NA

Functional Description of Inputs:

The inputs to this process wii] be the inputs to a migratable process, and

the outputs from that process.

Functional Description of Outputs:

The outputs from this process will be commands to the IC network to call

the appropriate process on a different computer, the inputs to that proc-

ess, and the outputs from that process.

Description of Function:

In the AIRS application software, there will be no knowledge of the multi-

computer nature of the system. Processes at this level will be able to

interact with other processes at this level with no knowledge as to where

the processes are. The commands used by application level processes to

interact with other processes shall be independent of the relative

locations of the processes. To this end, there will exist a "context man-

ager" whose task it will be to recognize attempts to interact wlth

external processes and route messages to the context manager on the

external processor. The context manager on the receiving end will cause

the appropriate action to occur.

Comments:

None.

179

3.5.2.3.2.1.4 IC Network Reconfiguration Software

Function Name: Reconfigure IC Network

Requirements Source: CSDL

Nodes in Which Function Required:

Startup

Reconfiguration

Initiation and Termination Events:

Initiation : On Demand
Termination: When the network is successfully reconfigured

Functional Description of Inputs:

Inputs to this process must specify the recorded status of each component

in the global I/0 network and the current configuration of the network.

Functional Description of Outputs:

The outputs from this process will include commands to the nodes of the
network to reconfigure and the final configuration of the network.

Description of Function:

This process reconfigures the nodes on the IC network such that:

(1) Al1 subscribers will have a communication path to al1 other sub-
scribers.

(2) Failed nodes are not used.

(3) Failed ports are not used.

(4) "Babbling" subscribers will not be listened to.

This process reconfigures the network based on errors discovered in the

components of the network,

Comments:

This process places the network operating system in reconfiguration mode.

This is a Global Computer process,

18o

3.5.2.3.2.1.5 IC Network Communication and Bus Control

Function Name: IC Network Communication

Requirements Source: CSDL

Modes in Which Function Required:

A11

Initiation and Termination Events:

Initiation: On Demand

Termination: Completion of Service

Functional Description of Inputs:

_he inputs to this process include messages and commands from other proc-
esses or from the network.

Functional Description of Outputs:

The outputs of this process include:

• Messages routed from the network to a process.

• Messages and commands to the network from a process.

• Error signa|_ to the FDIR processwhen errors occur.

Description of Function:

This process routes messages from one process on one subscr[ber to a proc-
ess on a different subscriber. Protocol standards will be followed when

possible.

Comments:

None.

181

3,5,2.3,2.1,6 IC Network Management

Function Name: IC Network Manager

Requirements Source: CSDL

Modes in Which Function Required:

All

Initiation and Termination Events:

Initiation: Globa] Computer Startup

Term)nation: Global Computer Turnoff

Functional Description of Inputs:

The inputs to this process include:

• The state information from the nodes, 11nks and processors.

Functional Description of Outputs:

The outputs of this process include:

• Commands to reconfigure the network.

• Signal to the function migration process to reconfigure.

Description of Function:

This process keeps the system operational. If hardware errors occur, this

process wi11 reconflgure the network (if necessary) or invoke the function

migration process (if necessary). At periodic intervals, this process

will poll the subscribers and nodes. Error information will be obtained

from these sources. Based on this information, this process will decide

whether the network is reliable; if not, it will reconfigure the nodes (if

the failure is in the network) or it will call the function migration pro-

cess to move functions (if a processor has become unreliable).

Comments:

This process is dependent on the number and type of nodes, along with the

protocols used to command a nodal switch. This is a Global Computer proc-
ess.

182

Function Name= initial Program Load

Requirements Source= CSDL

Modes in Which Function Required=

Startup

Initiation and Termination Events=

Initiation: Power up interrupt

Termination: Upon completion

Functional Description of Inputs=

Vectored interrupt to bootstrap loader

Functional Description of Outputs=

This function has no output

Description of Function=

Upon interrupt, each network subscriber shall bootstrap its operating

system and any required communication software. It will connect itself to
tocal (if any), and IC networks then idle. If a site is designated as the

Global Computer, it shall assume control of the network functions if it
can. This entails:

(1) initiating a periodic poll of subscribers

(2) establishing a viable IC network configuration

(3) establishing the global I/0 network

(4) assigning regional network manager(s)

(5) setting a value for system time

Sites designated an alternate Global Computer shall, if the designated

Global fails during the IPL, resolve any conflicts such that one alternate
assumes the Global Computer function. The number of alternates available
shall be at least one.

Comments=

None,

Function Name: Subscriber Applications Program Load

Requirements Source: CSDL

Modes in Which Function Required:

Startup

Reconfiguration

Initiation and Termination Events:

Initiation: initial configuration or reconfiguration

Termination: applications program load complete

Functional Description of Inputs:

Initial and alternate processing site load (function) assignments.

Functional Description of Outputs:

Load message to individual subscriber with load information.

Description of Function:

Once an initial physical configuration is established, the Global Comput-

er shall invoke this function to initiate the applications program load
configuration. This configuration shall accommodate one of the a priori

load assignments. Each subscriber shall be commanded to begin its APL
function referencing information in the load message.

When a reconfiguration is required, this function shall be activated in a

similar fashion to redistribute functional capabilities.

Upon completion of each site's load, the site shall notify the Global Com-
puter of its completion.

Comments:

This function resides in the Global Computer. The success or failure of

this load process is dependent on the avai]ability of a full or alternate
complement of hardware resources.

184

Function Name: Periodic Subscriber Poll

Requirements Source: CSDL

Modes in Which Function Required:

All

Initiation and Termination Events:

Initiation: Upon completion of Global Computer bootstrap load
Termination: always active

Functiona| Description of Inputs:

Subscriber response to poll message

Functional Description of Outputs:

Poll message transmitted over IC net

Oescrlption of Function:

The Global Computer site shall periodically poll all other sites. The

poll message shall contain, at a minimum, a request to respond to the poll

to each site. The motivation for this poll is twofold, first to assure

that communication on the IC net is working, and second to query those

sites that have been taken out of the operating configuration to determine

if reinstatement actions should be taken. If either the existing network

fails or if a processor is to be reinstated, the function migration or

network reconfiguration task shall be invoked.

Comments:

This function resides in the Global Computer.

185

Function Name: Function Migration

Requirements Source: CSDL

Modes in Which Function Required:

Reconfiguration
Normal

Initiation and Termination Events:

Initiation: By the fo]]owing:

(1) Operator initiated action.

(2) Pre-planned mission phase event or time.

(3) Pre-planned function migration in response to a fault.

(4) Reinstatement of a processing site or device after repair.

Termination: Site response of migration status

Functiona! Description of Inputs:

Event or command containing the stimulus (see initiation events).

Functional Description of Outputs:

Command and message sequence to sites affected by the function migration,

updated site/function tables.

Description of Function:

Each GPC in the AIPS shall be assigned to perform a fixed set of func-

tions. Severa] alternative assignments, corresponding to different
site/function configurations, sha]] be possib]e. These alternative con-

figurations sha]l be resident in the non vo]atiie program store, and be

accessible to al] of the pre designated sites through the mass memory or
some other data transfer medium. The control of this function shall

reside in the site designated as the Global Computer. Information neces-
sary for interprocessor and intertask communication shall be maintained

and made available to subscriber sites each time a configuration assign-
ment is a]tered.

This function shal] be activated during normal operating mode only in

response to the stimuli]isted above, to exercise a contro]led function

migration. Controlled implies that an a priori decision has been made
that defines what functions can migrate to where.

In case (1), operator inputs shall be checked for correctness and adher-

ence to predefined allowable configurations prior to changing the system

configuration. In case (2), an overlay or total memory reload may be

186

automatically initiated. In case (3), the global manager shall either (l)

command the "from" processor to transfer tasks and data directly to the

"to" processor via the IC network (e.g., large block transfer), or (2)

command the "to" processor to begin executing a task already resident in

its memory, or (3) command the "to" processor to retrieve the new tasks

and data from mass memory and begin executing the new tasks.

In any of the cases listed, the global manager shall determine if a recon-

figuration is possible (i,e., there is a capable alternate site available
with the required redundancy level to assume the new role). If the recon-

figuration is not possible, an exception shall be raised alternative
action shall be taken.

When global functions migrate they shall move to a designated alternate.

If reconfiguration is possible, the alternate shall be commanded to initi-

ate its local function migration tasks and assume the Global Computer role

when it can be gracefully done.

Comments:

In all of the above cases, there shall be only one function migration task
in process at any time. This function resides in the Global Computer.

I87

3.5.2.3.2.1.7 Network Time Management

Function Name: Broadcast System Time

Requirements Source: CSDL

Modes in Which Function Required:

All

Initiation and Termination Events:

Initiation: Global Computer startup

Termination: Global Computer shut down

Functional Description of inputs:

Time va)ue read from the source of system time and the base offset value

for system time.

Functional Description of Outputs:

Broadcast transmission of the System Time on the IC bus.

Description of Function:

This global computer function periodically reads the source for system
time, adds the time base offset value to arrive at System Time, and then

transmits it to all functioning-subscribers on the IC network.

Comments:

None.

188

Function Name: Set System Time

Requirements Source: CSDL

Modes in Which Function Required:

Startup
Normal

Initiation and Termination Events:

Initiation: On demand

Functional Description of Inputs:

Desired value of System Time.

Functional Description of Outputs:

The output of this function is a new setting of System Time.

Description of Function:

This global computer function alters the value of System Time in response

to an operator request or upon system initialization.

Comments:

None.

189

Function Name: System Time Source FDIR

Requirements Source: CSDL

Modes in Which Function Required:

All

Initiation and Termination Events:

Initiation: Global Computer startup

Termination: Global Computer shut down

Functional Description of Inputs:

GPC local clock dedrift values and an indication of the source of system

time.

Functional Description of Outputs:

Selection of the source of system time.

Description of Function:

This function setects the source for system time.

Comments:

None.

190

3.5.2.3.2.2 Global l/O Communication

GLOBAL I/0

COMMUNICATION

GLOBAL I/0

NETWORK FDIR

& NET STATUS

GLOBAL I/0

NETWORK INIT
AND RESTART

GLOBAL I/O NET

COMMUNICATION

& BUS CONTROL

GLOBAL I/0

NETWORK

MANAGEMENT

Figure 38. Global 1/0 Communication Functions

19]

3,5,2,3,2.2,1 Global I/0 Network FDIR and Network Status

Function Name: Signal Message Failure

Requirements Source: CSDL

Modes in Which Function Required:

All

Initiation and Termination Events:

Initiation : On demand when a transmission fails

Termination:

Functional Description of Inputs:

None.

Functional Description of Outputs:

The outputs from this function must specify the source computer
transmission and the destination device of the transmission.

Description of Function:

This function sends a message

was unsuccessful on.the global

Comments:

This function should be operable from each computer on the global
work.

of the

to the Global Computer that a transmission

I/0 network.

I/0 net-

192

I/0 Network Initialization and Restart

I/0 Device

3.5.2.3.2.2.2 Global

Function Name: Initialize Global

Requirements Source: CSDL

Modes in Which Function Required:

Startup

Initiation and Termination Events:

Initiation : On demand when a device changes status to "active"

Termination:

Functional Description of Inputs:

None

Functional Description of Outputs:

None

Description of Function:

This function performs any

Comments:

initializations required by a device.

This function should be operable from any Global Computer on the global

I/0 network.

193

3.5.2.3,2.2.3 Global I/0 Network Communication and Bus Control

Function Name: Transmit to Global I/0 Device

Requirements Source:

Modes in Which Function Required:

All

Initiation and Termination Events:

Initiation : On demand when requested by an application or system function
Termination:

Functlonal Description of Inputs:

The inputs to this function must specify the data to be sent to the device
and the device to which it is to be sent.

Functional Description of Outputs:

The outputs of thls function must specify any data received as a response
from the device and whether or not the transmisslon was successful.

Description of Function:

This function provides the service of transmitting commands and/or data to

a device on the global I/0 network and receiving a response from the
device.

Comments:

This function should be operable from each computer on the globa) I/0 net-
work.

194

3.5.2.3.2.2.4 Global I/0 Network Management

Function Name: Manage Contentions for Global I/0 Device

Requirements Source: CSDL

Modes in Which Function Required:

All

initiation and Termination Events:

Initiation : When a global I/0 device changes status to connected

Termination: When the global I/0 device changes status to isolated

Functional Description of Inputs:

The inputs to this function must specify an I/0 device on the global I/0
network.

Functional Description of Outputs:

The outputs from this function must specify when a process may communicate

with the device through the global I/0 network.

Description of Function:

This function decides which of two or more contending processes may commu-

nicate with a device on the global I/O.network when an uninterrupted

sequence of multiple transmissions is required to complete a communi-
cation. During such a communication, all other transmissions must be
blocked until the communication is completed.

Comments:

The need for this function is dependent upon the device and the nature of
the communications with the device. Contentions between single trans-

mission communications are decided by the contention hardware on the net-

work.

195

Function Name: Reconfigure Global I/0 Network

Requirements Source: CSDL

Modes in Which Function Required:

Startup

Reconfiguration

Initiation and Termination Events:

Initiation : Periodically to exercise "inactive"]inks, on demand when a

fault is detected, and on demand when a node changes status to "active".

Termination: When the network is successfully reconfigured

Functional Description of Inputs:

Inputs to this function must specify the recorded status of each component

in the global I/0 network, the current configuration of the network, and

information concerning any new faults in the system.

Functiona! Description of Outputs:

The outputs from this function must specify any changes in the status of

components in the global I/0 network or in the current configuration of
the network.

Description of Function:

This function reconfigures the nodes on the global I/0 network such that:

(|) there is a path from the Global Computer to every operating node in
the network.

(2) links that have had the status "inactive" for a period of time are

changed to "active"

This function isolates, identifies, and recovers from errors discovered

in the components of the network.

Comments:

This function should be operable from any G]obal Computer on the global

I/0 network. It places the network operating system in reconfiguration
mode.

196

Function Name: Periodically Check Status of Global I/0 Network Nodes

Requirements Source: CSDL

Modes in Which Function Required:

All

Initiation and Termination Events:

Initiation : Periodically beginning at startup
Termination: None

Functional Description of Inputs:

None

Functional Description of Outputs:

The outputs from this function must specify the status and configuration

of the nodes, specifically:

• The configuration of the ports to the node, i.e., which ports are

allowed to transmit messages

• The number of bit errors recorded for each port on the node since

the last status check

• The status of each port of each node

Description of Function:

This function commands the nodes to report status and error log informa-

tion to the Global Computer.

Comments:

This function should be operable from any Global Computer on the global

I/0 network.

197

Function Name: Periodically Check Idle Global I/0 Device

Requirements Source: CSDL

Modes in Which Function Required:

All

Initiation and Termination Events:

Initiation : Periodically beginning at startup
Termination: None

Functional Description ofInputs:

The inputs to thisfunction must specify a global I/0 device.

Functional Description of Outputs:

The outputs from this function must specify whether or not the trans-
mission was completed successfully.

Description of Function=

This function periodically sends a transmission to a device that has been
idle for a period of time to determine if the device and path to the device

are still functioning,

Comments:

None.

198

3.5.2.3.2.3 Regional I/0 Communication

I REGIONAL I/0COMMUNICATION

r
REGIONAL NET

FDIR AND
NET STATUS

I
REGIONAL NET

INIT AND

RESTART

REGIONAL NET

COMMUNI CATI ON
& BUS CONTROL

REG ONAL

I/0 NET

MANAGEMENT

Figure 39. Regional I/0 Communication Functions

199

3.5.2.3.2.3.1 Regional Network FDIR and Network Status

Function Name: Signal Message Failure

Requirements Source: CSDL

Modes in Which Function Required:

All

Initiation and Termination Events:

initiation : Transmission failure on a regional I/O network
Termination:

Functional Description of Inputs:

Functional Description of Outputs=

Identification of source and destination device for the transmission.

Description of Function=

Sends a message to the regional manager indicating that a transmission was
unsuccessful on the regional I/0 network,

Comments:

None.

200

3.5.2.3.2.3.2 Regional Network Initialization and Restart

Function Name: Initialize Regional Network

Requirements Source: CSDL

Modes in Which Function Required:

Startup

Reconfiguration

Initiation and Termination Events:

Initiation : On demand
Termination:

Functional Description of Inputs:

Command from the global manager to a selected GPC to initialize a regional

I/0 network.

Functional Description of Outputs:

Tables indicating configuration and status of devices, computers, and

busses comprising the regional network.

Description of Function:

Initializes a regional I/0 network. Initializes each I/0 device on the

regional network.

Comments:

GPC selected by the global manager to initialize a regional network

becomes the manager of that network.

201

Function Name: Initialize Regional I/0 Device

RequirementsSource: CSDL

Modes in Which Function Required:

Startup

Initiation and Termination Events:

Initiation : On demand when a device changes status to "active"
Termination:

Functional Description of Inputs:

Identity of regional I/0 device.

Functional Description of Outputs:

None

Description of Function:

Function performs any initializations required by a regional I/0 device.

Comments:

None.

202

3.5.2.3.2.3.3 Regional Network Communication and Bus Control

Function Name: Transmit to Regional I/0 Device

Requirements Source: CSDL

Modes in Which Function Required:

All

Initiation and Termination Events:

Initiation : Request by an application or system function
Termination:

Functional Description of Inputs:

Identification of data to be sent and destination device.

Functional Description of Outputs:

Indication of whether the transmission was successful.

Description of Function:

Provides

regional
mission.

Comments :

None.

for the transmitting of command and/or data to a device on the

I/0 network, Provides for the respons e of a device to a trans-

203

3.5.2.3.2.3.4 Regional I/0 Network Management

Function Name: Manage Contentions for Regional I/0 Device

Requirements Source: CSDL

Modes in Which Function Required:

All

Initiation and Termination Events:

Initiation : Status of regional I/0 device changes to connected
Termination: Status of regional I/0 device changes to isolated

Functional Description of Inputs:

Name of an I/0 device on the regional network.

Functional Description of Outputs:

Permission for a process to communicate with a device through the regional
network.

Description of Function:

Functiondecides which of two or more contending processes may communicate

with a device on the regional I/0 network' when an uninterrupted sequence

of multiple transmissions is required. During such a communication, all
other transmissions are blocked until the communication is completed.

Comments:

The need for this function depends upon the device and the nature of the
communications with the device. Contentions between single transmission
communications are decided by the contention hardware on the network.

204

Function Name: Reconfigure Regional I/O Network

Requirements Source: CSDL

Modes in Which Function Required:

Startup

Reconfiguration

Initiation and Termination Events:

Initiation : Periodically to exercise "inactive" links, on demand when a
fault is detected, and on demand when a node changes status to "active".

Termination: Upon successful reconfiguration of the network

Functional Description of Inputs:

Recorded status of each component in the regional I/0 network, the current

configuration of the network, and information concerning any new faults in

the system.

Functional Description of Outputs:

Identification of any changes in the status of components in the regional
I/0 network or in the current configuration of the network.

Description of Function:

Function reconfigures the nodes on the regional I/0 network such that:

(1) there is a path from the regional manager to every operating node
in the network.

(2) links that have had the status "inactive" for an application

dependent period of time are changed to _'active"

Function isolates, identifies, and recovers from errors discovered in the

components of the network.

Comments:

None.

205

Function Name: Periodically Check Status of Regional I/0 Network Nodes

Requirements Source: CSDL

Modes in Which Function Required:

A11

Initiation and Termination Events:

Initiation : Periodically every application dependent time interval

beginning at startup
Termination: None

Functional Description of Inputs:

None

Functional Description of OOtputs:

Status and configuration of the nodes, specifically:

• The configuration of the ports to the node, i.e., which ports are

allowed to transmit messages

• The number of bit errors recorded for each port on the node since
the last status check

• The status of each port of each node

Description of Function:

Function commands the nodes to report status and error log information to

the regional manager.

Comments:

None.

206

Function Name: Periodically Check Idle Regional

Requirements Source: CSDL

Modes in Which Function Required:

All

Initiation and Termination Events:

Initiation : Periodica]Iy every application
beginning at startup
Termination: None

Functional Description of Inputs:

Name of a regional I/0 device.

Functional Description of Outputs:

I/0 Device

dependent time interval

Indication of whether the transmission was completed successfully.

Description of Function:

Function periodical]y sends a transmission to a device that has been idle
for an application dependent period of time to determine if the device and

path to the device are still function!ng.

Comments:

None.

207

3.5.2.3.2.4 Mass Memory Communication

MASS MEMORY ICOMMUNICATION

MASS MEMORY

AND DATABASE

SUPPORT

Figure 40. Mass Memory Communication Function

208

3.5.2.3.2.4.1 Mass Memory and Database Support

Function Name: File Management

Requirements Source: CSDL

Modes in Which Function Required:

A11

Initiation and Termination Events:

Initiation: On Demand

Termination:

Functional Description of Inputs:

Various

Functional Description of Outputs:

Various

Description of Function:

The file management function shall support the following subfunctions:

• Initialize File System

Initializes the global file system.

• Create File

File with desired name is created.

• Open File

Function prepares the files to be accessed by the requester and

"locks" the files thereby preventing other processes from access-

ing the files.

• Cancel Open Request

Cancels previous open file request.

• Read File

Requested file transmitted to user.

• Write File

Designated file is updated.

• Close File

209

The designated file is unlocked thereby freeing it for access by
others.

• Delete File

All references to designated file in the file system directory are
deleted.

• Directory Functions

Functions are used for querying and updating file system directo-

ry.

• FDIR Functions

Functions provide fault detection, isolation, and recovery mech-

anisms for the file system.

Comments:

None.

210

Function Name= Mass Memory Read

Requirements Source: CSDL

Modes in Which Function Required:

Normal

Initiation and Termination Events:

Initiation: on demand

Functional Description of Inputs:

The inputs to this function are the addresses of the mass memory locations
to be read.

Functional Description of Outputs:

The outputs of this function are the contents of the mass memory
locations.

Description of Function:

This function responds to a request for the value of the contents of spec-
ified mass memory locations.

Comments:

None.

211

Function Name: Mass Memory Write

Requirements Source: CSDL

Modes in Which Function Required:

Normal

Initiation and Termination Events=

Initiation= on demand

Functional Description of Inputs:

The inputs to this function are the addresses of the mass memory locations
to be written into and the values to be stored.

Functional Description of Outputs:

The outputs of this function are the altered contents of the mass memory
locations.

Description of Function:

This function responds to a request to alter the contents

mass memory locations.

Comments:

NoneJ

of specified

212

4.0 QUALITY ASSURANCE

4.1 General Provisions shall be made for assuring the quality of the POC

system by performing a variety of inspection actiyities which assess the
compliance of the POC system with the requirements of this specification.

4.1.1 Responsibility For Tests Quality assurance activities shall be
conducted at CSDL by CSDL personnel. However, the NASA reserves the right

to witness such activity.

4.2 Quality Conformance The following methods of inspection are to be

used for quality assurance of the POC system.

(l) Examination (E).This form of inspection will consist of investi-

gation, without the use of special laboratory appllances or proce-
dures, to determine compliance with requirements. Examination is

generally nondestructive and includes (but is not limited to) vis-

ual inspection, simple physical manipulation, gauging, and meas-
urement.

(2) Demonstration (D). This form of inspection is limited to readily

observable functional operation to determine compliance with
requirements. Demonstrations do not require the use of special

equipment or sophisticated instrumentation.

(3) Test iT). This form of inspection employs technical means includ-
ing (but not limited to) the evaluation of functional character-

istics by use of special equipment or instrumentation, simulation

techniques, and the application of established principles and pro-

cedures to determine compliance with requirements. The analysis of
data derived from test is an integral part of this type of

inspection.

(_) Analysis (A). Analysis is an element of inspection, taking the form

of the processing of accumulated results and conclusions, intended

to prove that verification of requirements has been accomplished.

The analytical results may be comprised of a compilation or inter-

pretation of existing information or derived from lower level

examinations, tests, demonstrations, or analyses.

Table 2 on page 21_ indicates those methods to be applied for confirmation

of the requirements stated in section 3 of this specification.

213

Table 2. Quality Assurance Methods vs Requirements

Section 3 Paragraph

3.1

3.1.1
3.1.2

3.1.3
3.1.4
3.1.5
3.2
3.2.l
3.2.2

3.2.3

3.2.4

3.2.5
3.3
3.3.]
3.3.2
3.3.3
3.3.1+
3,4
3.5
3.5.1
3,5.2

E D T A

System definition
Introduction

_IPS concept x x

System Services x x x
Proof-of-Concept System x x x

AIPS POC System Operating Environment x x x
Characteristics

Performance goals x x x
Physical characteristics x

Design objectives x x x

Testability x x x
Environmental conditions x

Design and construction

Parts, materials & processes x
Electromagnetic radiation x

Workmanship x

Computer programming standards x
Documentation x

Functional area characteristics

System hardware x x x

System software x x x x

4.3 Evaluation Evaluation testing will be accomplished after completion

of development inspections. Development inspections include testing and

other activities accomplished to assure that the various AIPS require-
ments are satisfied. Evaluation tests will exercise the AIPS in stress

environments to explore the achieved performance and characteristics of

the system. This testing will be conducted on the Integration and Evalu-
ation Test Facility.

_.0 PREPARATION FOR DELIVERY

5.1 Shipments All shipments shall be accomplished in accordance with

CSDL's established shipping methods and procedures and shall be properly
documented by the CSDL's usual shipping forms, memos, etc. The NASA shall

not directly or indirectly be charged any sum for insurance coverage on
items shipped. Shipping documents will indicate the applicable Prime Con-

tract as being NAS9-16023, and the applicable Task Order as being Task
Order No. 84-18. Information copies of all letters of transmittal of

reports, shipping documents or other relevant delivery information will
be forwarded to the NASA/JSC Contracts Administration Office, Attention:

A. M. Cornelius, BC28.

6.0 NOTES

6.1Laning Poll

214

6.1.1 Overview The Laning poll is a method by which subscribers compete

for access to a bus-like resource. Subscribers wishing access to the

medium detect its availability by completlon of a transaction or a period

of nonuse and perform a cooperative sequence which results in control of

the medium being granted to one contender.

The bus must act as a logic 'or' to signals presented to it; that

is, if any subscriber outputs a "I", all subscribers will receive a

11111 .

Each subscriber must have a unique number associated with it. A11

other things being equal, the subscriber having the highest number

will prevail.

Dynamic priority may be implemented. The results will be that the

participant having the highest priority (as determined by that

participant) will gain access. If two or more contenders have the

same priority the higher numbered participant will prevail.

6.1.2 An Implementation A serial implementation of the Laning poll pro-

ceeds in the following sequence:

(I) A subscriber desiring access transmits a "l" on the bus to signify-

ing the beginning of a competition. Others may do this simul-

taneously, of course. At this point, all subscribers are aware

that a poll sequence has begun and may participate if they desire

access; if they do not want access at this time, they must not join

the sequence inprogress.

(2) Contenders next transmit the most significant bit of their priori-

ty. If a 'zero' appears on the bus, a11 contenders continue. If a

'one' appears of the bus, contenders transmitting a 'one' contin-

ue, while contenders transmitting a 'zero' have been elimlnated

and no longer participate in this sequence.

(3) The remaining bits of priority are transmitted, then the bits of

subscriber number. If during any bit interval a 'one' appears on

the bus while a contender is transmitting 'zero' that contender

ceases participation. The result is that a number has been trans-

mitted to all subscribers indicating the priority and number of the

successful subscriber, which now transmits data.

The number of bit intervals required to conduct the poll is:

B = I + 1og2P + log2S

where P = number of possible priority levels

S = number of possible subscribers

6.1.3 Timing Considerations. For proper operation, a11 subscribers must

operate simultaneously on bits of the same significance. This implies

that a bit interval during a po11 must be of a duration of at least one

roundtrip delay on the medium.

215

°

6.2 Encoded Mass Memory A triplicated memory provides adequate fault

masking capability. However, it is too costly to triplicate a 10 megaword
memory. A very attractive alternative for such a large memory array is to

use coded redundancy. Coded redundancy, when used appropriately, can pro-
vide the same]eve] of fault tolerance as replicated memory. And it is
much more efficient in terms of hardware than rep]icated memory for]arge

memory arrays.

A candidate coded redundancy scheme for the mass memory is shown in Fig-

ure 41 on page 217.

A triplex mass memory multiplex bus connects General Purpose Computers to
a Mass Memory Unit (MMU). Within the MMU there are three Encoder/Decoder

Units (EDUs). Each EDU interfaces with one of the three Mass Memory Bus-
es. An EDU receives 16-bit data words and the address and command words

for memory access operations from a processor. There are also N memory
modules which actually store the data. Each of the memory modules inter-

faces with each of the EDUs. The operation of the MMU is as follows.

For memory write operations, data received from a processor is encoded by
the EDU and appropriate field of the coded word is sent to each memory
module. Each memory module receives three copies of a part of the coded

data, votes on it, and stores the voted result.

For memory read operations, each memory modu]e responds to the read

request with a part of the coded word to each of the three EDUs.. The EDUs
assemble memory responses into the coded word, decode it into the 16-bit

data word, and transmit it to processors on the Mass Memory Bus. Each

processor then listens _q the three buses and votes on the three copies of
the data word.

An MMU with six memory modules is shown in Figure 41 on page 217.

The encodlng/decoding of such a memory is as follows. For memory write

operations, each EDU converts the 16-bit data word into a 24-bit code word

using Hamming Code. The 2h-bit code word is then split into six 4-bit
fields. Each of these six 4-bit fields is stored in an independent memory

module. For an 8 megaword mass memory, each memory module wi]l be BX22O by

4. The 23-bit memory address is passed to the memory modules unchanged.

For memory read operations, each memory module responds to the EDUs with a
4-bit field of the coded data word. The six 4-bit fields are received by

each EDU, assembled into a 2_-blt code word, and then decoded to retrieve
the 16-bit data word.

This coded redundancy scheme allows one to tolerate a complete failure of

any one of the memory modules. One can also tolerate multiple bit fail-
ures in different memory modules as long as they are not in the same word.

And, of course, failures of any one of the three Encoder/Decoder Units is

also masked by the voters in the processor and the memory modules.

Thus, single fault masking capability can be achieved with an overhead of

only 50 per cent over simplex in a coded redundancy scheme versus 200 per

cent for a triplicated memory, The coded memory requires 12 megawords of

216

TRIPLEX MASS
MEMORY BUS

i

I
I
T
l

8 MEGAWORD MASS MEMORY UNIT

TO/FROM EDU=

8 × 220 X 4

MOOULE

MEMORY INTERFACE
-(VOTER, AOORESS

DECOOER)

n_T_A E_ODER/DECOOE R UNIT

Figure 41. Mass Memory Architecture

physical memory while triplicated memory requires 2_ megawords to imple-

ment B megawords of logical memory.

6.3 Simplex Source Congruency Simplex source congruency is defined as

congruent or identical distribution of data from a simplex source to a

redundant system. This simplex source of data may be within or without

the system. It is important that a]] redundant copies of hardware receive

congruent values of data originating in the simplex source. This is a

necessary condition in fault tolerant systems that rely on exact repli-

217

cation and comparison of computational streams. The actual means of

achieving exact replication are not relevant. Redundant computers,

whether tightly synchronized or only frame synchronized, must perform
source congruency operation on all simplex data. In the absence of source

congruency even a triply redundant system can suffer single point system
failure.

Figure 42 on page 219 illustrates the concept of simplex source congruency
for a triplex system.

Consider a radar altimeter that is connected to one channel of a triplex

computer as shown in Figure 42. Typically, at the beginning of a control

law computation, channe] A wou]d read the altimeter as an input. It then

sends this value to channels B and C, as illustrated by step I in the fig-

ure. In the absence of any faults, all channels will have an identical
value of the radar altitude of the aircraft. AFter all sensors have been

read and distributed to all channels, contro] law computation wil] be per-

formed and all three processors should produce identical actuator com-

mands. Now, assume that there is a fault in channel A's transmitter such

that the va]ues transmitted to B and C are not the same. Let us assume

that C receives the correct value but the value received by B is differ-

ent. In this case, A and C would produce identica] results. However, B's

answer should be different. Since channel outputs are normally compared

to check for faults in the computational core, channel B would be flagged

as having failed. That is, the fault diagnosis in this case would be

incorrect. In fact, the results can be even more catastrophic if a dif-
ferent value is transmitted to each channel. All three channels can not

only produce divergent' actuator commands but can also be totally desyn-

chronized from each other, depending upon the nature of the input value.

One way to avoid this single point failure is to exchange and vote upon

the value received by each channel. This is shown as step II in Fig-
ure 42. In step II, all channels retransmit the word to each other. Each

channel votes upon the three values and the majority output of the voter
is used as the congruent value of the simplex input. Now, if channel A

does not transmit the same value to all in step I, or if A, B, or C do not
transmit the same value in step II, even then, the voted value w[11 be

identical in all the channels provided that there is only a single fault.

This implies that steps I and II should not be affected simultaneously by
a correlated fault. Therefore, it is necessary to provide a fault con-

tainment region around each transmi_ter. It can be shown that it is nec-

essary to have four fault containment regions to tolerate all single
faults. Three fault containment regions such as those in most triplex
systems are not sufficient.

218

It should be noted here that performing source congruency operations on

simplex data only assures that all redundant processorshave a congruent

value. It does not assure that the congruent value is correct. Other
means must be employed to ascertain the validity of the value. Typically,

for critical values the source, such as a sensor, is replicated. Each of

the redundant sensors is read in by a processor and the congruent value of

each sensor distributed to all processors. All processors can then per-

form appropriate sensor fault detection and isolation algorithm to arrive

at a correct and congruent sensor value.

SENSOR

®
STEP I STEP II

CHANNEL A

CHANNELB

CHANNELC

Figure 42. Simplex Source Congruency: An Example

219

220 |,_._.,_N_O_ _ _v _

